- Sunil Golwala
- mm Universe 2025
 - 2026/06/25
- Simon Hempel-Costello, Adriana Gavidia, Jean-Marc Martin,
 - Yann Sadou, Jack Sayers (Caltech)
- Andrew Beyer, Peter Day, Fabien Defrance, Clif Frez, Cecile Jung-Kubiak (JPL),
 - Junhan Kim (KAIST)
- Shibo Shu (IHEP), Shiling Yu, Ran Duan (NAOC), Crystal Huang, Feng Liu (ShNU)
 - + spectrometer collaborators:
 - Elijah Kane (Caltech), Matt Bradford (JPL), Lautaro Correa, Rodrigo Reeves (UdeC)

The Next-generation Extended-Wavelength Multiband Sub/millimeter Inductance Camera (NEW-MUSIC)

> Institute of High Energy Physics **Chinese Academy of Sciences**

1971

Science targets for a multi-band mm/submm focal plane with mJy sensitivity

Design and demonstrations to date of NEW-MUSIC enabling technology: Al(-Ti)/a-Si:H Parallel Plate Capacitor (PPC)-KIDs microstrip-coupled to multi-band hierarchical phased-array antennas

Instrument Configuration and Deployment

Conclusions and outlook

NEW-MUSIC/mm Universe 2025

Outline

3 minute integration on ~FoV-scale field (7' initially; 14' full focal plane)

band [GHz]	90	150	220	270	350	405
rms depth [mJy]	Ι	2	2	3	4.5	9
5σ detection limit [mJy]	5		10.5	19	22	47

Multi-band spectral coverage 80-420 GHz: substantial scientific potential

Six spectral bands available most of the time at excellent sites

Many astrophysical emission mechanisms accessible:

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

High-frequency synchotron emission from transient and time-variable sources

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

High-frequency synchotron emission from transient and time-variable sources Dust thermal emission, including from episodic accretion in young stellar objects

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

- High-frequency synchotron emission from transient and time-variable sources Dust thermal emission, including from episodic accretion in young stellar objects
- Redshifted fine-structure lines
 - Broad spectral coverage critical to multi-line observations

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

High-frequency synchotron emission from transient and time-variable sources Dust thermal emission, including from episodic accretion in young stellar objects **Redshifted fine-structure lines**

Broad spectral coverage critical to multi-line observations

SZ effect in galaxy clusters, circumgalactic medium, and IGM

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

High-frequency synchotron emission from transient and time-variable sources Dust thermal emission, including from episodic accretion in young stellar objects **Redshifted fine-structure lines**

Broad spectral coverage critical to multi-line observations

SZ effect in galaxy clusters, circumgalactic medium, and IGM

Science targets complementary to wide-area CMB surveys

Triggered, flexible cadence 6-band follow-up 80-420 GHz SZ/dust mapping of individual large clusters and nearby gala Small, deep fields for SZ from CGM in lower mass galaxies Multi-band integral field unit (IFU) spectroscopy

- Multi-band spectral coverage 80-420 GHz: substantial scientific potential
 - Six spectral bands available most of the time at excellent sites
 - Many astrophysical emission mechanisms accessible:

- High-frequency synchotron emission from transient and time-variable sources Dust thermal emission, including from episodic accretion in young stellar objects **Redshifted fine-structure lines**
 - Broad spectral coverage critical to multi-line observations
- SZ effect in galaxy clusters, circumgalactic medium, and IGM
- Science targets complementary to wide-area CMB surveys
 - Triggered, flexible cadence 6-band follow-up 80-420 GHz SZ/dust mapping of individual large clusters and nearby gala Small, deep fields for SZ from CGM in lower mass galaxies Multi-band integral field unit (IFU) spectroscopy
- Technology development transformative for future wide-field 30m-50m mm/submm telescope

Natural next step in mm/submm, complement to ALMA Multi-band pixels and IFUs offer significant gain in science/

Al(-Ti)/a-Si:H PPC-KIDs microstrip-coupled to multi-band hierarchical phased-array antennas

Two-Scale, Four-Band Hierarchical Antenna Demonstrator

Peter Day, Shibo Shu

32x32 slots/feeds for fundamental elements

BPFs on each fundamental element

2x2 summed array

Uses two-layer meta-material silicon AR Defrance et al (Appl Opt 2018) Three and four-layer demonstrated Defrance et al. arXiv:2401.17637 (IEEE TST) Defrance et al in prep

Two-Scale, Four-Band Hierarchical Antenna Beams

Two-Scale, Four-Band Hierarchical Antenna Beams

Beams match expectations well down to -10 dB

Three-Scale, Six-Band Hierarchical Antenna Design

Split fundamental antennas into 16x16 quadrants BPF/BPF/LPF banks must be placed inside array

Gaps comparable to 2-scale Filter design completed (Sonnet sims) GDS file ready to go on mask

NEW-MUSIC/mm Universe 2025

Three-Scale, Six-Band Hierarchical Antenna Design

Split fundamental antennas into 16x16 quadrants BPF/BPF/LPF banks must be placed inside array

Gaps comparable to 2-scale Filter design completed (Sonnet sims) GDS file ready to go on mask

NEW-MUSIC/mm Universe 2025

 $S_{N_{qp}}^{tot} = S_{N_{qp}}^{GR} + S_{N_{qp}}^{\gamma} \approx \frac{V}{R} \left[1 \cdot \frac{1}{R} \right]$

$$+ \eta_{pb} \left(\frac{h\nu}{2\Delta} + \frac{\eta_{opt} k_B T_{load}}{2\Delta} \right) \right]$$

Lifetime limited by recombination of optically generated qps $\implies S_{N_{ap}}^{tot}$ linearly related to T_{load} $\left[1 + \eta_{pb} \left(\frac{h\nu}{2\Delta} + \frac{\eta_{opt} k_B T_{load}}{2\Delta}\right)\right]$

$$S_{N_{qp}}^{tot} = S_{N_{qp}}^{GR} + S_{N_{qp}}^{\gamma} \approx \frac{V}{R} \left[1 \right]$$

$$S_{N_{qp}}^{tot} = S_{N_{qp}}^{GR} + S_{N_{qp}}^{\gamma} \approx \frac{V}{R} \left[1 \right]$$

Verified with cold (77K), mirror (150K), and \cdot hot (300K) loads

ZHS_{Nqp}

Lifetime limited by recombination of optically generated qps $\implies S_{N_{ap}}^{tot}$ linearly related to T_{load} $\left|1 + \eta_{pb} \left(\frac{h\nu}{2\Delta} + \frac{\eta_{opt} k_B T_{load}}{2\Delta}\right)\right|$

$$S_{N_{qp}}^{tot} = S_{N_{qp}}^{GR} + S_{N_{qp}}^{\gamma} \approx \frac{V}{R} \left[1 \right]$$

Verified with cold (77K), mirror (150K), and hot (300K) loads

Enables use of high loading lab data to predict total noise under expected sky load (B3 $T_{load} = 40$ K)

NEW-MUSIC/mm Universe 2025

Lifetime limited by recombination of optically generated qps $\implies S_{N_{ap}}^{tot}$ linearly related to T_{load} $\left|1 + \eta_{pb} \left(\frac{h\nu}{2\Delta} + \frac{\eta_{opt} k_B T_{load}}{2\Delta}\right)\right|$

 $[Hz^{-1}]$

$$S_{N_{qp}}^{tot} = S_{N_{qp}}^{GR} + S_{N_{qp}}^{\gamma} \approx \frac{V}{R} \left[1 \right]$$

Verified with cold (77K), mirror (150K), and hot (300K) loads

Enables use of high loading lab data to predict total noise under expected sky load (B3 $T_{load} = 40$ K)

Key takeaway: Always enough responsivity to be GR or photon-noise-limited:

NEW-MUSIC/mm Universe 2025

Lifetime limited by recombination of optically generated qps $\implies S_{N_{ap}}^{tot}$ linearly related to T_{load} $\left|1 + \eta_{pb} \left(\frac{h\nu}{2\Delta} + \frac{\eta_{opt} k_B T_{load}}{2\Delta}\right)\right|$

 $|Hz^{-1}|$

NEW-MUSIC/mm Universe 2025

Noise Performance at Low Frequency

Noise Performance at Low Frequency

- Noise under dark conditions white down to ≤ 0.1 Hz
 - TLS noise subdominant to GR noise
 - Residual low-frequency noise probably removable electronics noise

NEW-MUSIC/mm Universe 2025

Reuse MUSIC cryostat

Optics

External relay optics incl. ellipsoid + internal 4K HDPE lens + Lyot stop f/2.19 already, reduce to f/1.72 Replace baffling with new, blacker materials (e.g., Wollack et al 2016, Xu et al 2021, Inoue et al 2023) Filtering/AR Baseline: HDPE lens + Teflon filters (2-layer porex AR) + shaders/zotefoam Upgrade: mesh filters, silicon lens with metamaterial AR (dicing saw and/or DRIE (Defrance et al 2025)) Cryogenics

Extant Chase ³He/³He/⁴He fridge + Cryomech PT-415 Incorporates 2-layer magnetic shield

Reuse MUSIC cryostat

Optics

External relay optics incl. ellipsoid + internal 4K HDPE lens + Lyot stop f/2.19 already, reduce to f/1.72 Replace baffling with new, blacker materials (e.g., Wollack et al 2016, Xu et al 2021, Inoue et al 2023) Filtering/AR Baseline: HDPE lens + Teflon filters (2-layer porex AR) + shaders/zotefoam Upgrade: mesh filters, silicon lens with metamaterial AR (dicing saw and/or DRIE (Defrance et al 2025)) Cryogenics

Extant Chase ³He/³He/⁴He fridge + Cryomech PT-415

Incorporates 2-layer magnetic shield

Readout

RFSoC system; e.g. ASU development for CCATp

Reuse MUSIC cryostat

Optics

External relay optics incl. ellipsoid + internal 4K HDPE lens + Lyot stop f/2.19 already, reduce to f/1.72 Replace baffling with new, blacker materials (e.g., Wollack et al 2016, Xu et al 2021, Inoue et al 2023) Filtering/AR Baseline: HDPE lens + Teflon filters (2-layer porex AR) + shaders/zotefoam Upgrade: mesh filters, silicon lens with metamaterial AR (dicing saw and/or DRIE (Defrance et al 2025)) Cryogenics Extant Chase ³He/³He/⁴He fridge + Cryomech PT-415 Incorporates 2-layer magnetic shield Readout RFSoC system; e.g. ASU development for CCATp Deploy to Leighton Chajantor Telescope (2027 first light) Move of CSO telescope to Chajnantor Plateau telescope packed, working on agreements and site infrastructure 1/4 FPU initially (16 x B1/B2, 64x B3/B4, 256 x B5/B6) for time-domain astronomy 2024 NSF ATI proposal: excellent reviews 😀, no funding 😥 😤 😨 😱 😅 Upgrade to full FPU for deep survey fields after science demonstration

Sunil Golwala/2025-06-25

NEW-MUSIC/mm Universe 2025

Key demonstrations in hand for new mm/submm focal plane architecture for NEW-MUSIC

- Multi-band hierarchical antennas incl. bandpass filters
 - ✓ Two-scale beams incl. hierarchical summing
 Three-scale design ready for fab
 - ✓ Bandpasses for four bands
 Six-band design ready for fab

Key demonstrations in hand for new mm/submm focal plane architecture for NEW-MUSIC

- Multi-band hierarchical antennas incl. bandpass filters
 - ✓ Two-scale beams incl. hierarchical summing Three-scale design ready for fab
 - ✓ Bandpasses for four bands
 Six-band design ready for fab
- Microstrip-coupled Al/a-Si:H PPC KIDs
 - ✓ Optical Efficiency (incl. 2-layer AR) (see backup)
 Improve dewar windows at high frequency, 4-layer AR
 - ✓ Yield good start! (see backup)
 Need more data; develop C trimming
 - ✓ direct absorption (see backup)
 - ✓ TLS noise of a-Si:H PPCs low enough Subdominant down to ~0.1 Hz, probably lower
 - \checkmark GR-noise-limited down to $\lesssim 0.1$ Hz dark
 - Photon/GR-noise-limited under optical load
 Need to test to low frequency under relevant loads (40K-150K)
 - ✓ AI-Ti about to be tested optically (see backup) Dark data yield 170 µeV = 82 GHz: just right!

NEW-MUSIC/mm Universe 2025

Key demonstrations in hand for new mm/submm focal plane architecture for NEW-MUSIC

- Multi-band hierarchical antennas incl. bandpass filters
 - ✓ Two-scale beams incl. hierarchical summing Three-scale design ready for fab
 - ✓ Bandpasses for four bands
 Six-band design ready for fab
- Microstrip-coupled Al/a-Si:H PPC KIDs
 - ✓ Optical Efficiency (incl. 2-layer AR) (see backup)
 Improve dewar windows at high frequency, 4-layer AR
 - ✓ Yield good start! (see backup)
 Need more data; develop C trimming
 - ✓ direct absorption (see backup)
 - ✓ TLS noise of a-Si:H PPCs low enough Subdominant down to ~0.1 Hz, probably lower
 - \checkmark GR-noise-limited down to $\lesssim 0.1$ Hz dark
 - Photon/GR-noise-limited under optical load
 Need to test to low frequency under relevant loads (40K-150K)
 - ✓ AI-Ti about to be tested optically (see backup) Dark data yield 170 µeV = 82 GHz: just right!

NEW-MUSIC/mm Universe 2025

Focal plane can be integrated with existing MUSIC cryostat and optics

Plan to deploy 1/4 NEW-MUSIC to LCT in 2027

Funding-permitting...

Time domain science immediately

Cluster science early on

Full FPU will enable deep survey fields

3 minute integration on ~FoV-scale field (7' initially; 14' full focal plane)

band [GHz]	90	150	220	270	350
rms depth [mJy]	I	2	2	3	4.5
5σ detection limit [mJy]	5	11	10.5	19	22

Key demonstrations in hand for new mm/submm focal plane architecture for NEW-MUSIC

- Multi-band hierarchical antennas incl. bandpass filters
 - ✓ Two-scale beams incl. hierarchical summing Three-scale design ready for fab
 - \checkmark Bandpasses for four bands Six-band design ready for fab
- Microstrip-coupled Al/a-Si:H PPC KIDs
 - \checkmark Optical Efficiency (incl. 2-layer AR) (see backup) Improve dewar windows at high frequency, 4-layer AR
 - Yield good start! (see backup) Need more data; develop C trimming
 - \checkmark direct absorption (see backup)
 - ✓ TLS noise of a-Si:H PPCs low enough Subdominant down to ~0.1 Hz, probably lower
 - ✓ GR-noise-limited down to ≤ 0.1 Hz dark
 - Photon/GR-noise-limited under optical load Need to test to low frequency under relevant loads (40K-150K)
 - \checkmark AI-Ti about to be tested optically (see backup) Dark data yield 170 μ eV = 82 GHz: just right!

NEW-MUSIC/mm Universe 2025

Focal plane can be integrated with existing MUSIC cryostat and optics

Plan to deploy 1/4 NEW-MUSIC to LCT in 2027

Funding-permitting...

Time domain science immediately

Cluster science early on

Full FPU will enable deep survey fields

3 minute integration on ~FoV-scale field (7' initially; 14' full focal plane)

band [GHz]	90	150	220	270	350
rms depth [mJy]	I	2	2	3	4.5
5σ detection limit [mJy]	5		10.5	19	22

Next technical development:

Filterbank spectrometer with a-Si:H resonant filters and PPCs

R = 300 and $R > 10^4$ designs on next mask!

Small enough to put KIDs in focal plane!

Key demonstrations in hand for new mm/submm focal plane architecture for NEW-MUSIC

- Multi-band hierarchical antennas incl. bandpass filters
 - ✓ Two-scale beams incl. hierarchical summing Three-scale design ready for fab
 - \checkmark Bandpasses for four bands Six-band design ready for fab
- Microstrip-coupled Al/a-Si:H PPC KIDs
 - \checkmark Optical Efficiency (incl. 2-layer AR) (see backup) Improve dewar windows at high frequency, 4-layer AR
 - Yield good start! (see backup) Need more data; develop C trimming
 - \checkmark direct absorption (see backup)
 - ✓ TLS noise of a-Si:H PPCs low enough Subdominant down to ~0.1 Hz, probably lower
 - ✓ GR-noise-limited down to ≤ 0.1 Hz dark
 - Photon/GR-noise-limited under optical load Need to test to low frequency under relevant loads (40K-150K)
 - \checkmark AI-Ti about to be tested optically (see backup) Dark data yield 170 μ eV = 82 GHz: just right!

NEW-MUSIC/mm Universe 2025

Focal plane can be integrated with existing MUSIC cryostat and optics

Plan to deploy 1/4 NEW-MUSIC to LCT in 2027

Funding-permitting...

Time domain science immediately

Cluster science early on

Full FPU will enable deep survey fields

3 minute integration on ~FoV-scale field (7' initially; 14' full focal plane)

band [GHz]	90	150	220	270	350
rms depth [mJy]	I	2	2	3	4.5
5σ detection limit [mJy]	5		10.5	19	22

Next technical development:

Filterbank spectrometer with a-Si:H resonant filters and PPCs

R = 300 and $R > 10^4$ designs on next mask!

Small enough to put KIDs in focal plane!

Promising and transformative technology for a future 30m-50m mm/submm telescope!

Backup Slides

Bandpasses and Optical Efficiency

Two-scale antenna + four bands + µstrip-coupled PPC-KIDs Bandpasses largely meet expectations! Filters have been tweaked to better match atmospheric windows Need to understand ripple (deeper than expected) **Optical efficiency reasonable!** Total optical efficiency = $\eta_{opt} \eta_{pb}$ $\eta_{pb} = 0.65, 0.49, 0.45, 0.41$ (Guruswamy et al. 2014) Dewar window/filters not optimal for higher bands UHMWPE, Teflon Two-layer Si AR for 200-300 GHz Unlikely to be loss in microstripline Yield: 49/56 and 47/56. Good start!

NEW-MUSIC/mm Universe 2025

Sunil Golwala/2025-06-25

Sunil Golwala/2025-06-25

Wideband Hierarchical Antennas

Same focal plane area can be used for multiple spectral bands Pixel size scales with wavelength to ensure good matching to Airy function

Wideband Hierarchical Antennas

design has intrinsically large bandwidth, almost ~7.5:1! (slight tweaking needed)

Efficiency

slot, tap spacing: 104 µm slot width: 18 µm feed impedance: 54 Ω (1 μ m line) tuning capacitor: -40i Ω at 100 GHz dielectric: 1070 nm a-Si:H backshort distance: 150 µm 32x32 array, 3.3 mm on a side

Non-Antenna Response (Direct Absorption)

Key design goal: mitigate direct absorption by KID Inductor $< I \mu m$ from ground plane Parallel-plate capacitor with Middle plate integral to ground plane (not an island — use virtual ground) Top plates $< I \mu m$ from ground plane Microstrip feedline: no CPW gaps in ground plane

Constraints on direct absorption:

Allow all resonators three contributions

direct optical response η_{opt}

heating of wafer $P_{tile} = g(T_{tile}^n - T_{bath}^n)$

temperature calibration offset T_{offset}

Results:

 $P_{opt}^{dark}/P_{opt}^{light} \lesssim 1\%$ in spite of broader bandwidth of darks (~120-420 GHz) $T_{tile} - T_{bath}$ varies with T_{bath} but not T_{load} , depends on resonator, larger for darks \implies probably a model systematic (soaking up imperfect M-B fit), not real tile heating

Non-Antenna Response (Direct Absorption)

Key design goal: mitigate direct absorption by KID Inductor $< I \mu m$ from ground plane Parallel-plate capacitor with Middle plate integral to ground plane (not an island — use virtual ground) Top plates $< I \mu m$ from ground plane Microstrip feedline: no CPW gaps in ground plane Can also test for tile heating using Nb LC resonators with a-Si:H PPCs Mainly intended to measure RF loss Also act as differential thermometers! $\delta f/f \lesssim 10^{-7}$ between hot, mirror, cold $\implies \Delta T \lesssim 3 \text{ mK}$ Confirms tile heating implied by hot/mirror/cold/dark M-B fits is not real

Noise Performance — Dark

GR noise visible well above amplifier noise

 $S_{N_{an}} \sim \text{ind. of } T \text{ as expected}$ for *R*-limited behavior

$$S_{N_{qp}} \propto 4 \tau_{qp} N_{qp}$$
$$\mathsf{NEP}_{qp} = \frac{\Delta}{\tau_{qp}} S_{N_{qp}}^{1/2}$$

no correction for η_{pb} , but also no η_{pb} uncertainty

$$NEP_{opt} = NEP_{qp}/\eta_{pb}$$
$$\approx 1.5 - 2.5 NEP_{qp}$$

 $\eta_{pb} = 0.41 - 0.65$

(Guruswamy et al. 2014)

T = 310 - 330 mK has τ_{qp}, N_{qp} comparable to behavior under telescope optical load \implies realistic GR noise contribution

Need to validate with AIMn (in process)

NEW-MUSIC/mm Universe 2025

NEW-MUSIC/mm Universe 2025

21

Sunil Golwala/2025-06-25

-					_
				_	_
				_	
					_
-					_
_					_
-					
	-				
		-			_
		-	-	_	-
			-		

Noise Performance —	$\frac{\eta_{pb} P_{opt}}{\Delta} = V$
Under Optical Load —	$\frac{\Delta}{\frac{\eta_{pb} dP_{opt}}{\Lambda}} = 2$
Backup	$(\mathrm{NEP}_{ont}^{\gamma})^2 = 2 J$
Can show, for recombination-limited	$S_{N_{qp}}^{\gamma} = (\mathbf{N})$
qp lifetime: linear relationship	$=\eta_p$
between $S_{N_{qp}}^{tot}$ and T_{load}	$S_{N_{qp}}^{GR} = 4 \tau$

 $S_{N_{qp}}^{tot} = S_I^0$

 $S_{N_{qp}}^{tot} = S_{L}^{0}$

Dark data measures first term (independent of T_{bath} !) and thus R. Offset and coefficient measure different combinations of Δ , η_{pb} , η_{opt} ; can measure or check any two. Dependence on R?

$$\mathsf{NEP}_{qp} = \frac{2 R N_{qp}}{V} \Delta \left[S_{N_{qp}}^{tot} \right]^{1/2} = 2 \Delta \left\{ \frac{R N_{qp}^2}{V} \left[1 + \left(\frac{N_{qp}^{th}}{N_{qp}} \right)^2 + \eta_{pb} \left(\frac{h \nu}{2 \Delta} + \frac{\eta_{opt} k_B T_{load}}{2 \Delta} \right) \right] \right\}^{1/2} = 2 \sqrt{\Delta} \left\{ \eta_{pb} P_{opt} \left[1 + \left(\frac{N_{qp}^{th}}{N_{qp}} \right)^2 + \eta_{pb} \left(\frac{h \nu}{2 \Delta} + \frac{\eta_{opt} k_B T_{load}}{2 \Delta} \right) \right] \right\}^{1/2}$$

$$\begin{split} & TR n_{qp}^2 = \frac{R N_{qp}^2}{V} = \frac{1}{2} \frac{N_{qp}}{\tau_{qp}} \qquad \text{Note the } 1/2! \text{ It comes from } \tau_{qp} = \frac{1}{2 R n_{qp}} = \frac{1}{2 R n_{qp$$

AT2018cow: Fast Blue Optical Transient, well-studied in mm/submm

Strong sync from mildly relativistic shock wave in dense CSM, $n_e \sim 10^5$ cm⁻³

 ν_p yields shock parameters: R_{outer} , *B* field, energy, speed, density of medium, $\nu_{cooling}$

NEW-MUSIC depth in 12 min integration

				<u> </u>		
band [GHz]	100	150	220	270	350	405
depth [mJy rms]	0.5	-	_	1.5	2	4

NEW-MUSIC/mm Universe 2025

Very visible w/NEW-MUSIC! 10-20 min to reach same depth/SNR in 6 bands Sync peak location unclear at t < 20 days, but perhaps > 300 GHz until day 6-7 mm emission self-trigger for 650/850 GHz search for non-thermal components hints of NIR excess seen

Implications for Transients with LCT

Early comparisons to objects with similar radio luminosities (luminous SNe, luminous TDEs) suggest that they too might have had bright, early mm/submm emission

Rates estimates are promising

band [GHz]	100	150	220	270	350	405
depth [mJy rms]	0.5	-	Ι	1.5	2	4

NEW-MUSIC/mm Universe 2025

Rates	for	$5_{\sigma} = 5$	5 mly	at 90	GHz	(3-min	integrati	ion) ر(Anna	Ho)
			/			\	0			

	Luminosity	Horizon	Rate	1
Class	[10 ²⁷ erg/s/Hz]	[Gpc]	[/yr/Gpc ³]	[/yr]
SNe	1	0.013	100,000	0.4
Interacting SNe	100	0.130	10,000	37
FBOT	1,000	0.410	100	12
LLGRB	100	0.130	1,000	3.7
LGRB $\theta_{obs} < 0.2$	100,000	4.090	0.3	34
LGRB 0.2 < θ_{obs} < 0.4	30,000	2.240	1	23
LGRB 0.4 < θ_{obs} < 0.8	1,000	0.410	5	0.5
relativistic TDEs	20,000	1.800	0.03	0.3

Thermal SZ (tSZ) measures

n kT = thermal energy density
→ integrated tSZ is calorimeter of energy in the hot CGM

Self-similarity expected to hold for masses at which all baryons can be retained: closed box, scale-invariant
Lower mass galaxies: simulations say winds drive baryons out of near CGM

Maybe a contributor to SF inefficiency: winds heat CGM at high M, flow out to high *R* at lower M

2022

Kim et

Kim et al 2022

Thermal SZ (tSZ) measures *n kT* = thermal energy density
→ integrated tSZ is calorimeter of
energy in the hot CGM
Self-similarity expected to hold for masses

at which all baryons can be retained: closed box, scale-invariant

Lower mass galaxies: simulations say winds drive baryons out of near CGM

Maybe a contributor to SF inefficiency: winds heat CGM at high M, flow out to high *R* at lower M

2022

Kim et al

Thermal SZ (tSZ) measures *n kT* = thermal energy density
→ integrated tSZ is calorimeter of
energy in the hot CGM
Self-similarity expected to hold for masses

at which all baryons can be retained: closed box, scale-invariant

Lower mass galaxies: simulations say winds drive baryons out of near CGM

Maybe a contributor to SF inefficiency: winds heat CGM at high M, flow out to high *R* at lower M

Impact of cosmic rays?

x10 colder CGM in smaller galaxies

CR not lost in larger galaxies

NEW-MUSIC/mm Universe 2025