Harnessing the power of mm-wave intensity mapping to study early galaxy formation Guochao (Jason) Sun | CIERA Fellow at Northwestern University 15 YEARS Collaborators: T. Nguyen, T. Starkenburg, B. Scott, C.-A. Faucher-Giguère (NU/CIERA/SkAI) A. Lidz (Penn), T.-C. Chang (JPL), S. Furlanetto (UCLA)

mm Universe 2025 | University of Chicago | June 27, 2025

Funded by the U.S. National Science Foundation and the Simons Foundation

NEUTRAL HYDROGEN IONIZED HYDROGEN YOUNG GALAXIES

IONIZED HYDROG

Studying early galaxies with multi-tracer IM

High-redshift Universe: fascinating by its many unknowns

- When and how did first galaxies form?
 - What drove cosmic reionization and how?
 - What were first black holes like?
 - Unique lab for new physics?

LIMFAST: 21cmFAST extension for multi-tracer IM

Studying early galaxies with multi-tracer IM

- ► L. Mas-Ribas, **GS** et al. (2023): Methodology & LIM predictions
- ► **GS** et al. (2023): LIM for high-z galaxy formation
- ► **GS** et al. (2025):
 - 21cm²–NIRB cross-correlation
- ► GS et al. (2025, in prep.): Parameter inference from LIM

Gas-regulator model for feedback-regulated star formation

Studying early galaxies with multi-tracer IM

$$\begin{split} \frac{\tilde{M}'_{\rm h}}{\tilde{M}_{\rm h}} &= -\mathcal{M}_0 & \text{Halo ma} \\ &= \mathcal{M}_0 \left[-\frac{1}{X_{\rm g}} + \eta_0 \dot{X}_{\star,0} \left(\frac{X_{\rm g}}{X_{{\rm g},0}} \right)^{\alpha_{\rm X}} \tilde{M}_{\rm h}^{\alpha_{\rm m}} \left(\frac{1+z}{1+z_0} \right)^{\alpha_{\rm z}} \right] & \text{Gas ma} \\ \tilde{M}'_{\star} &= -\mathcal{M}_0 \dot{X}_{\star,0} \left(\frac{X_{\rm g}}{X_{{\rm g},0}} \right)^{\beta_{\rm X}} \tilde{M}_{\rm h}^{\beta_{\rm m}} \left(\frac{1+z}{1+z_0} \right)^{\beta_{\rm z}} & \text{Stellar ma} \\ & \frac{X'_{\rm g}}{X_{\rm g}} = \frac{\tilde{M}'_{\rm g}}{\tilde{M}_{\rm g}} - \frac{\tilde{M}'_{\rm h}}{\tilde{M}_{\rm h}} & \text{Gas retention} \\ & \tilde{M}'_{Z} &= \left[y_{Z} - \eta \left(\tilde{M}_{Z} / \tilde{M}_{\rm g} \right) \right] \tilde{M}'_{\star} & \text{Metal ma} \end{split}$$

GS et al. (2025, in prep.; see also S. Furlanetto 21)

Halo properties respond differently to SFE & SF law

GS et al. (2025, in prep.)

Studying early galaxies with multi-tracer IM

Multi-line emission: a toy model of multi-phase gas nebula

- Scaled by halo stellar/gas mass content

S. Choi et al. (2020)

L_[CII] & L_[OIII] under varying SFE & SF law assumptions

Studying early galaxies with multi-tracer IM

Simulating [CII], [OIII], and their cross-correlation w/ LBGs Roman LBGs with $m_{AB} < -28.2$

Studying early galaxies with multi-tracer IM

Guochao (Jason) Sun | C I E R A Northwestern University

GS et al. (2025, in prep.)

Fisher matrix forecasts for [CII] & [OIII] joint analysis

Table 1. Survey and instrument specifications of the [C II] and [O III] LIM surveys considered in this work

	Target	Redshifts	Bandpass	$D_{ m ap}$	$\Omega_{ m survey}$	$t_{ m surve}$
			(GHz)	(m)	(deg^2)	(hr)
				Cur	rent-gene	ration
	[C II]	6, 7, 8, 9	190 - 270	10	4	4000
	[O III]	7.5, 8.5	360,400	10	4	4000
					Next-gene	eration
	[C II]	6,7,8,9	190 - 270	3	4	1000
	[O III]	6,7,8,9	340 - 490	3	4	1000
Current, CCAT-like	Note—I	Reference va	lues of $\Omega_{ ext{bear}}$	$_{ m m},V_{ m vo}$	$_{\rm c}, {\rm and} \ P_{\rm N}$	are gi
$\Delta \xi = 0.054 \ 1.186 \ 0.0$ 1.8 1.6 1.4 $I.4$ $I.4$ $I.2$	052	Δξ _z	= 0.590 2	27.01	0.584	$\Delta \zeta = 0.163 \ 18.74 \ 0.159$

Studying early galaxies with multi-tracer IM

Implicit likelihood inference (ILI) w/ LIMFAST-simulated PS

Studying early galaxies with multi-tracer IM

Posterior from ILI w/ vs. w/o combining [CII] and [OIII]

GS et al. (2025, in prep.)

Studying early galaxies with multi-tracer IM

Guochao (Jason) Sun | C I E R A Northwestern University

- ξ, ζ less degenerate w/ [CII] & [OIII]
- Constraint on ζ greatly tightened

Validating posterior predictiveness & coverage from ILI

Guochao (Jason) Sun | C I E R A Northwestern University

- Multi-tracer IM provides a powerful way to statistically and collectively study physical processes that govern the formation and evolution of early galaxies.
- As mm wavelengths, combining [CII] and [OIII] LIM statistics (in foreseeable future) allows us to understand the SFE and SF law of high-redshift galaxies.
- Compared with traditional, explicit-likelihood methods, ILI enables more flexible and scalable analysis of galaxy formation physics using LIM summary statistics.

Studying early galaxies with multi-tracer IM

Guochao (Jason) Sun | C I E R A Northwestern University

BACK UP SLIDES

Star formation efficiency (stellar mass-halo mass relation)

Mass & redshift dependence

Guochao (Jason) Sun | C I E R A Northwestern University

Star formation law (a.k.a. Kennicutt-Schmidt relation)

Studying early galaxies with multi-tracer IM

- Surface densities & gas depletion time
- Slope: denser gas better at SF (if > 1)

Guochao (Jason) Sun | C I E R A Northwestern University

