

### Constraining structure formation over cosmic time with CMB lensing

mm Universe conference | June 27, 2025

Joshua Kim (University of Pennsylvania)





ACT

## Why do predictions of structure formation from early-time probes differ from late-time observations?



#### CMB lensing as a probe

Weak gravitational lensing of CMB photons traces the *unbiased* matter distribution from z ~ 1100.

$$T^{\text{lensed}}(\hat{\mathbf{n}}) = T^0(\hat{\mathbf{n}} + \boldsymbol{\alpha}), \ \boldsymbol{\alpha} = \nabla \phi$$

Breaks isotropy of the CMB:

 $\frac{\langle T^{\text{lens}}(\ell) T^{\text{lens}}(\ell' \neq \ell) \rangle_{\text{CMB}} = 0}{\langle T^{\text{lens}}(\ell) T^{\text{lens}}(\ell' \neq \ell) \rangle_{\text{CMB}} \propto \phi(\mathbf{L} = \ell + \ell')}$ 

Motivates the **quadratic estimator**:

$$\hat{\phi}(\mathbf{L}) \sim \int \mathrm{d}^2 \mathbf{l} T(\mathbf{l}) T^*(\mathbf{l} - \mathbf{L})$$





# Using CMB lensing *power spectra* to constrain structure growth

### 1. CMB lensing **cross-correlation** with galaxies





2. CMB lensing **auto-correlation** (lensing power spectrum)



#### CMB lensing x DESI LRGs



4

#### CMB lensing x DESI LRGs

Qu+23

Madhavacheril+23

MacCrann+23

Carron+22

CMB lensing mass maps from ACT DR6 and Planck PR4

State-of-the-art data!

DESI luminous red galaxies (~1e7) with 4 redshift bins from 0.4 < z < 1.0

Zhou+22 Zhou+23



#### CMB lensing x DESI LRGs



0.85

 $\overset{0.80}{S}^{\infty}$ 

#### CMB lensing x DESI LRGs

#### ~50*o* measurement!



#### CMB lensing x DESI LRGs

## Using **tomography** to probe structure growth over time:



### Also see Sailer+25 (2503.24385), combining this analysis with DESI BGS (z < 0.4) cross-correlation!



# Using CMB lensing *power spectra* to constrain structure growth

1. CMB lensing **cross-correlation** with galaxies





## 2. CMB lensing **auto-correlation** (lensing power spectrum)



#### Lensing power spectrum analysis beyond ACT DR6



Expected improvements (to SNR ~ 60+):

- Inclusion of *daytime* data: ~1.7x amount of the data
- Additional seasons (2022 night, 220 GHz data) *See Frank's talk!*
- Improved sky-cuts (~10% improvement)
   Map-level combination with Planck
- **Optimal filtering** (10-15% improvement)

#### Improved sky cuts (Abril-Cabezas+25, 2505.03737)





Irene Abril-Cabezas PhD student @ Cambridge

> ACT 60% -> 70% leads to **<0.3σ**.

### Map-level coaddition of data

- Needlet ILC to coadd:
  - 30 ~ 353 GHz CMB from Planck NPIPE
  - 90, 150, 220 GHz CMB from ACT DR6+ night
  - 90, 150 GHz CMB from ACT DR6+ day
- Expanding on work done in Coulton+24:
  - Run on O(100) signal + noise simulations to infer lensing biases -<sup>2</sup>
  - Using independent pipeline, coberus
- Negligible effect from "ILC bias"



### Using optimal filtering for CMB lensing reconstruction

- ~10-15% improvement over *isotropic filtering*
- Approaching Wiener filtering of the CMB optimally using:
  - Inhomogeneous noise maps (Mirmelstein+19, Carron+22)
  - Preconditioned conjugate gradient solver (<u>optweight</u> by Adri)
  - Joint temperature + polarization filtering
  - Unbiased realizations to fill masked holes for point sources, tSZ clusters, etc. (Lembo+19)
- Done in Planck analyses, but not for ACT DR6!

$$X_{WF}^{\text{isofilt}}(\ell) = \left(\frac{C_{\ell}^{fid}}{C_{\ell}^{fid} + N_{\ell}^{fid}}\right)^2 \times \mathbf{d}(\ell)$$

$$\left(\mathbf{B}C^{fid}\mathbf{B}^{T}+\mathbf{N}\right)X^{\text{optfilt}}_{WF}=\left(\mathbf{B}C^{fid}\mathbf{B}^{T}\right)\mathbf{d}$$

Given noise covariance and fiducial theory spectra, how can we *invert the LHS* to solve for X?



#### Conclusion and outlooks

CMB lensing cross-correlations and its auto-spectrum can be used to probe the matter distribution and constrain structure growth.

- ACT DR6 (+ PR4) x DESI LRGs offers <3% constraints on structure growth parameters.
- Featuring notable improvements from DR6, the ACT DR6+ lensing power spectrum analysis aims for SNR ~ 60+
- Lensing pipelines are developed with SO LAT compatibility in mind!

#### • Stay tuned for our papers!

- Kim *et al.* in prep
- Abril-Cabezas *et al.* in prep a/b
- Qu *et al.* in prep

## Backup slides

DESI galaxy auto-spectra



#### Theory model

P<sub>gg</sub>, P<sub>gm</sub>, and P<sub>mm</sub> modeled with "**Hybrid Effective Field Theory**" (HEFT) Modi, Chen, White 2019

 $F(\boldsymbol{q}) = 1 + b_1^L \delta_{cb}(\boldsymbol{q}) + \frac{b_2^L}{2} \left( \delta_{cb}^2(\boldsymbol{q}) - \langle \delta_{cb}^2 \rangle \right) + b_s^L \left( s_{cb}^2(\boldsymbol{q}) - \langle s_{cb}^2 \rangle \right) + \frac{b_{\nabla^2}^L}{4} \left( \nabla^2 \delta_{cb}(\boldsymbol{q}) - \langle \nabla^2 \delta_{cb} \rangle \right) + \mathcal{E}(\boldsymbol{q})$ 

Computing the power spectra from these densities:

In 3D this HEFT model has shown to be robust up to k ~ 0.5-0.6 h / Mpc.

#### Do galaxies correlate with systematics in data?

 Cross-correlating galaxy maps with combinations of lensing products where *null* Hy signals are expected X<sup>i</sup> P<sup>i</sup>

 5/48 failures ~
 10.4% failure rate (expecting 10% uncorrelated failures on avg)

0.2

0.0

0.4

PTEs

0.6

0.8

1.0

| Current null test PTI                                                                                                                                                                                                                 | Es                                                                                                                                                                     |                                      |       |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|----------|
| Null test                                                                                                                                                                                                                             | Bin 1                                                                                                                                                                  | Bin 2                                | Bin 3 | Bin 4    |
| $QE(f150 - f090 \text{ MV}) \times g$                                                                                                                                                                                                 | 0.490                                                                                                                                                                  | 0.852                                | 0.538 | 0.864    |
| QE(f150 - f090  TT) 	imes g                                                                                                                                                                                                           | 0.971                                                                                                                                                                  | 0.135                                | 0.296 | 0.130    |
| $QE(	ext{curl}) 	imes g$                                                                                                                                                                                                              | 0.086                                                                                                                                                                  | 0.586                                | 0.093 | 0.244    |
| $QE(f150 \text{ MV}) \times g - QE(f090 \text{ MV}) \times g$                                                                                                                                                                         | 0.631                                                                                                                                                                  | 0.862                                | 0.891 | 0.671    |
| $QE(f150 \text{ TT}) \times g - QE(f090 \text{ TT}) \times g$                                                                                                                                                                         | 0.995                                                                                                                                                                  | 0.719                                | 0.945 | 0.662    |
| $QE(f090 \text{ MV}) \times g - QE(f090 \text{ TT}) \times g$                                                                                                                                                                         | 0.325                                                                                                                                                                  | 0.408                                | 0.583 | 0.330    |
| $QE(f150 \text{ MV}) \times g - QE(f150 \text{ TT}) \times g$                                                                                                                                                                         | 0.971                                                                                                                                                                  | 0.161                                | 0.263 | 0.535    |
| $QE$ (baseline MV) $\times g - QE$ (baseline MVPOL) $\times g$                                                                                                                                                                        | 0.985                                                                                                                                                                  | 0.690                                | 0.778 | 0.648    |
| QE(baseline MV) × $g - QE$ (CIB deproj.) × $g$                                                                                                                                                                                        | 0.103                                                                                                                                                                  | 0.553                                | 0.820 | 0.655    |
| QE(baseline 60%) × $g - QE$ (baseline 40%) × $g$                                                                                                                                                                                      | 0.427                                                                                                                                                                  | 0.371                                | 0.982 | 0.313    |
| $QE$ (baseline MV) $\times g - QE$ (baseline MV) $\times g_{\text{DES area}}$                                                                                                                                                         | 0.169                                                                                                                                                                  | 0.876                                | 0.252 | 0.759    |
| QE(baseline, NGC) × $g - QE$ (baseline, SGC) × $g$                                                                                                                                                                                    | 0.056                                                                                                                                                                  | 0.639                                | 0.644 | 0.374    |
| $\text{fypothesis: } \mathbf{d} = 0.$                                                                                                                                                                                                 | 1 . 2 007 DTE                                                                                                                                                          | 0.42                                 |       |          |
| $\mathcal{L}^{2} = \mathbf{d}^{T} \mathbb{C}^{-1} \mathbf{d}$ $\mathcal{L}^{T} \mathbf{E} = 1 - \mathrm{CDF}_{\chi^{2}}(\chi^{2}/\mathrm{d.o.f})$ $\mathcal{L}^{T} \mathbf{E} = 1 - \mathrm{CDF}_{\chi^{2}}(\chi^{2}/\mathrm{d.o.f})$ | $\begin{aligned} &  \chi^2 = 8.07, \text{ PTE} \\ &2   \chi^2 = 8.67, \text{ PTE} \\ &3   \chi^2 = 1.96, \text{ PTE} \\ &4   \chi^2 = 9.36, \text{ PTE} \end{aligned}$ | = 0.43<br>= 0.37<br>= 0.98<br>= 0.31 |       | T        |
| ull test failure: $PTE \leq 0.05 \text{ or } PTE \geq 0.95$ $0.2$                                                                                                                                                                     |                                                                                                                                                                        |                                      |       | <u> </u> |
|                                                                                                                                                                                                                                       |                                                                                                                                                                        | Í                                    |       | I        |
| 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                 |                                                                                                                                                                        | 1                                    | 1 l   | İ        |
|                                                                                                                                                                                                                                       | 200 4                                                                                                                                                                  | 0 6                                  | 00 80 | )()      |

L

#### Do galaxies correlate with systematics in data?

 $\Delta C_{\ell}^{gg}/C_{\ell}^{gg}$ 

0.0

-0.2

Now checking for LRG auto-spectrum variations:

- Across different imaging footprints
- North vs South (DECaLs, DES vs non-DES)
- Stricter extinction / stellar density cut
  - Testing for Galactic contamination

Checking for spurious correlations between:

- SFD's dust extinction map
- Systematic weights used in Zhou+23 to prepare LRG density map

These tests are highlighted in Sailer+24.

![](_page_19_Figure_10.jpeg)

# Do galaxies correlate with foregrounds in simulations?

![](_page_20_Figure_1.jpeg)

- Built LRG-like HOD into the Websky simulations, cross-correlated with foregrounds-only lensing reconstruction (MacCrann+23)
- Shift in power spectrum amplitude due to foregrounds cross-corr. is ~0.1 sigma, **not significant**!

#### Covariance matrix

- Computed correlations between ACT Clkg, Planck Clkg, and Clgg using a theory-based Gaussian covariance
- Used Gaussian simulations to inform the main diagonal of this "hybrid" covariance matrix:

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

#### Using optimal filtering for CMB lensing reconstruction

$$\left(\mathbf{B}C^{fid}\mathbf{B}^{T} + \mathbf{N}\right)X_{WF}^{\text{optfilt}} = \left(\mathbf{B}C^{fid}\mathbf{B}^{T}\right)\mathbf{d}$$

Given noise covariance and fiducial theory spectra, how can we quickly *invert the LHS* to solve for a Wiener filtered field? Works well on simulations...

![](_page_22_Figure_4.jpeg)