Image credit: Illustris Collaboration

Fundamental Physics with kSZ Tomography

Illinois Center for Advanced Studies of the Universe & Department of Physics, University of Illinois Urbana-Champaign

> Based on <u>2407.21094</u> & <u>2502.05260</u> with: S. Hotinli, P. Adshead, E. Kovetz, M. Madhavacheril

mm Universe 2025 University of Chicago, June 23-27, 2025

Avery Tishue

Kinematic Sunyaev-Zeldovich (kSZ) Effect

- Inverse Compton scattering between CMB photons and free electrons moving with a bulk peculiar velocity [Y. Zeldovich & R. Sunyaev 1969]
- Induces correlations between large scale structure and CMB

Avery Tishue June 25, 2025

kSZ Tomography: Velocity Reconstruction

- kSZ temperature anisotropy: $\Theta_{\rm kSZ}(\vec{\theta}) = K(z_{\star}) \int_{0}^{R} dr \,\delta_{e}(\vec{x}) v_{r}(\vec{x})$
- Temperature fluctuation correlated with velocity of large-scale structure
 - minimum variance quadratic estimator: $\hat{v}_r \sim \langle gT \rangle$
 - reconstruct velocities:

$$\hat{v}_r(k_L) \sim \int dk_S d\ell \, \delta_g(k_S) T(\ell) W(k_S, \ell)$$

 $W(k_s, \ell) \rightarrow \text{minimize noise, unbiased } \hat{v}_r$ [Smith et. al. 2018]

do cosmology

mm Universe 2025 University of Chicago, June 23-27, 2025

Avery Tishue June 25, 2025

<u>Cosmology with kSZ Velocities</u>

Velocity field traces matter (clustering) and growth rate: $v \sim \delta_m \frac{faH}{I}$

$$\langle \delta_m \delta_m \rangle \sim P_{mm}$$

$$f = \frac{d}{d \ln a} \left[\left(\frac{P_{mm}(k,a)}{P_{mm}(k,a=1)} \right)^{1/2} \right]$$

- growth rate can tell us about modified gravity, dark energy, massive neutrinos, etc.
- Observables: power and cross spectra

$$P_{\hat{v}_r \hat{v}_r}(k, z) = \left[b_v(z) \mu \frac{f(k) a H}{k} \right]^2 P_{mm}(k, z)$$

•
$$P_{g\hat{v}_r}(k,z) = b_v(z)\mu \frac{f(k)dH}{k} b_g(k,z) P_{mm}(k,z)$$

• $v \sim 1/k$: kSZ is a probe of matter power and cosmic arowth with good signal to noise on large scales

mm Universe 2025 University of Chicago, June 23-27, 2025

Two Applications of kSZ Tomography

<u>1. PNG: "Beyond Local Type"</u>

- Specific scenario: light fields during inflation $m \lesssim H$
- More generally: large scale galaxy bias beyond $\Delta b(k) \propto 1/k^2$ (from f_{NL}^{loc})

Avery Tishue June 25, 2025

Scale-dependent galaxy bias and PNG

- Familiar "local-type": $\zeta_{NG} = \zeta_g(\mathbf{x}) + f_{NL}^{\text{loc}} \left[\zeta_g^2(\mathbf{x}) \langle \zeta_g^2 \rangle \right]$
- signal: scale-dependent galaxy bias [e.g. N. Dalal et. al. 2008, M. LoVerde et. al. 2008]

$$, \ \delta_g = (b_1 + \Delta b(k)) \delta_{m'}$$

$$\Delta b(k) \propto \frac{f_{NL}^{\text{loc}}}{T(k)D(z)k^2}$$

- Where does kSZ come in?
 - galaxy survey in isolation suffers degeneracies, large-scale cosmic variance: $P_{gg}(k,z) = b_g^2(k,z)P_{mm}(k,z)$
 - use additional tracers! [U. Seljak 2009, M. Münchmeyer et. al. 2018]

$$\implies P_{gg}/P_{\hat{v}_r\hat{v}_r} \sim b_g^2/b_v^2$$

- But! many sources of primordial non-Gaussianity (multi-field scenarios, excited initial states, etc.)
 - beyond local type [D. Baumann 2009]
 - this can work for non-Gaussianity **beyond local-type, too**

mm Universe 2025

University of Chicago, June 23-27, 2025

Avery Tishue June 25, 2025

Primordial Signals in Galaxy Bias: beyond local PNG

• scenario: inflaton ϕ , & light spectator χ (mass $m \leq H$) [D. Baumann et. al. 2013, SPHEREx collab. 2015, D. Green et. al. 2023]

• "Scaling exponent" $\Delta = \frac{3}{2} - \sqrt{9/4 - m^2/H^2}$

- PNG ⇒ Scale-dependent bias beyond local-type

, local type: $\Delta b(k) \propto \frac{f_{NL}^{\text{loc}}}{T(k)D(z)k^2}$, (m = 0), generally: $\Delta b_{NG}(k, z) \propto 3f_{NL}^{(\Delta)} \frac{b_{\phi}(z)}{k^2 T(k)D(z)} (kR_{\star})^{\Delta}$

use kSZ to look for this!

Avery Tishue June 25, 2025

Probing beyond local-type ($\Delta = 0$) PNG with kSZ

- Fisher Forecast: CMB S4 + LSST
- Improved constraints around $f_{NL} = 0$ from kSZ + galaxies compared to:
 - galaxies alone, P_{gg}
 - Constraints 2× tighter!
 - Projected CMB bispectrum constraints
 - kSZ outperforms CMB for range of Δ

kSZ may be the best probe of primordial non-Gaussianity for various interesting early Universe scenarios!

mm Universe 2025 University of Chicago, June 23-27, 2025

<u>Detecting beyond local-type non-Gaussianity with kSZ</u>

• Assume we detect nonzero f_{NL} — now what?		10 ³
- We need to know the shape! Δ		
 Significantly degrades constraints 	$\left(\begin{array}{c} \nabla \\ NL \end{array} \right)$	-
from galaxies and kSZ	$\sigma\left(f\right)$	10 ²
 'apples to apples' comparison with 		
pure CMB is non-trivial		101
 kSZ can reinforce CMB results on 	2	
non-zero f_{NI}	+by+;	2.75
 kSZ improves shape constraints 	$\left(\begin{array}{c} \Delta \\ \Pi \end{array} \right)$ gg	2.25
significantly — information about	$\sigma\left(f_{N}^{\prime}\right)$	
primordial scenarios!	88	1.75
	$f_{NL}^{(\Delta)}$	-
	ð	1.25

[P. Adshead & AJT 2024]

Two Applications of kSZ Tomography

<u>1. PNG: "Beyond Local Type"</u>

- Specific scenario: light fields during inflation $m \lesssim H$
- More generally: large scale galaxy bias beyond $\Delta b(k) \propto 1/k^2$ (from f_{NI}^{loc})

2. Massive Neutrinos

- Improve constraints on $\sum m_{\nu}$?
- Matter clustering, cosmic growth

Avery Tishue June 25, 2025 2407.21094 2502.05260

10

Why might kSZ be useful here?

 Velocity field traces matter (clustering) and growth **rate**: $v \sim \delta_m \frac{faH}{r}$

•
$$f = \frac{d}{d \ln a} \left[\left(\frac{P_{mm}(k, a)}{P_{mm}(k, a = 1)} \right)^{1/2} \right]$$

• $P_{g\hat{v}_r}(k, z) = b_v(z)\mu \frac{f(k)aH}{k} b_g(k, z) P_{mm}(k, z)$

mm Universe 2025 University of Chicago, June 23-27, 2025

11

Why might kSZ be useful here?

 Velocity field traces matter (clustering) and growth rate: $v \sim \delta_m \frac{faH}{r}$

•
$$f = \frac{d}{d \ln a} \left[\left(\frac{P_{mm}(k, a)}{P_{mm}(k, a = 1)} \right)^{1/2} \right]$$

• $P_{g\hat{v}_r}(k, z) = b_v(z)\mu \frac{f(k)aH}{k} b_g(k, z) P_{mm}(k, z)$

mm Universe 2025 University of Chicago, June 23-27, 2025

The Role of kSZ in Probing Massive Neutrinos

- important early work [E. M. Mueller et. al., 2014]
- ▶ kSZ ⇒ additional, differently biased tracer of matter power
 - break degeneracy between cosmology and astrophysics

$$P_{gg}(k, z) = b_g(k, z)^2 P_{mm}(k, z)$$
$$P_{\hat{v}_r \hat{v}_r}(k, z) = \left[b_v(z) \mu \frac{f(k) a H}{k} \right]^2 P_{mm}(k, z)$$

- "Anchor" the galaxies => improved small scale sensitivity
- Independent probe of cosmic growth

<u>mm Universe 2025</u> University of Chicago, June 23-27, 2025

Baseline Results: kSZ Neutrino Mass Constraints

Key Questions:

 "How effective is kSZ as a sole, 	
independent probe of growth?"	S4+BAC
 Remove all CMB lensing info 	
 Marginalize over RSD bias, 	S4+BAC
$b_g \ni b_{\rm rsd} f \mu^2$	$+P_{\hat{v}_r\hat{v}}$
"What does kSZ add that isn't already	S4+BAC
in the galaxy and CMB survey used to	$+P_{g_{d}}$
facilitate the velocity reconstruction?"	S4+BAC
• Compare $[S4 + P_{gg}]$ to	$+P_{gg}+kSZ$
$[S4 + P_{gg} + kSZ]$	ſ

14

Modeling Details: Bias Assumptions

simpler galaxy bias model? (redshift- and scale-dependent information) — minimal S4+BAO impact

kSZ optical depth degeneracy

- how do electrons trace LSS? $P_{ge}^{\text{true}}(k_S) \neq P_{ge}^{\text{fid}}(k_S) \rightarrow \hat{v}_r = b_v v_r$
 - biased velocity reconstruction!
- Uncertainty in small scale astrophysics \iff uncertainty in cosmological inference
- Marginalize over b_v (analogous to linear galaxy bias b_1)

 $+P_{gg}$

S4+BAO

 $+P_{gg}+kSZ$

June 25, 2025

What about CMB Lensing?

- Observed CMB temperature, polarization are
- CMB lensing is a powerful probe of cosmic growth, massive neutrinos
- gains from breaking kSZ optical depth degeneracy are overshadowed by CMB lensing info

Looking (Way) Ahead

CMB HD:

- no lensing info
- similar to baseline (S4+LSST) results
- HD + "spec-z LSST" $\implies \sim 25\%$ tighter constraints on $\sum m_{\nu}$ without b_{ν} prior

Other non-kSZ probes:

- KSZ & neutrino-induced galaxy bias? [Chiang et.] al. 2018, AJT et. al. (in prep)]
- "neutrino winds" [C. Nascimento & M. Loverde, 2023]
- Ine intensity mapping [Shmueli et. al. 2024]
- ► etc.

mm Universe 2025 University of Chicago, June 23-27, 2025

[AJT et. al. 2025]

17

- kSZ can help us search for new physics from the early universe, e.g. light particles present during an inflationary epoch, with scale-dependent bias from primordial non-Gaussianity beyond the local limit
- In principle, kSZ may shed light on massive neutrinos, but in practice its use case will likely be more complementary than it will be distinctive
- futuristic prospects look very bright!

mm Universe 2025 University of Chicago, June 23-27, 2025

Summary and Outlook

Extra Slides

mm Universe 2025 University of Chicago, June 23-27, 2025

Avery Tishue June 25, 2025

kSZ 'Optical Depth' Degeneracy

- kSZ tomography: underlying signal is a squeezed bispectrum [Smith et. al. 2018]
 - $P_{gv}? \rightarrow \langle \delta_g \delta_g T \rangle \propto P_{ge}(k_S) P_{gv}(k_L)$

uncertainty in smallscale astrophysics

cosmological inference

- Biased velocity reconstruction $P_{ge}^{\text{true}}(k_S) \neq P_{ge}^{\text{fid}}(k_S) \rightarrow \hat{v}_r = b_v v_r$
 - marginalize over b_v (scale-independent, analogous to linear galaxy bias b_1)

mm Universe 2025 University of Chicago, June 23-27, 2025

June 25, 2025

2502.05260

Primordial Non-Gaussianity with kSZ: Overview

Primordial non-Gaussianity: Basics

- inflation: quantum fluctuations seeds large scale structure, $\delta \phi \sim \zeta$
 - 'generically' Gaussian (single field, slow roll)
 - Observable squeezed bispectrum is small!

- [J. Maldacena 2003]
- [P. Creminelli & M. Zaldarriaga 2004]
- [E. Pajer et. al., 2013, P. Creminelli et. al. 2014]
- "Local-type": $\zeta_{NG} = \zeta_g(\mathbf{x}) + f_{NL}^{\text{loc}} \left[\zeta_g^2(\mathbf{x}) \langle \zeta_g^2 \rangle \right]$
- Many sources of primordial non-Gaussianity (multi-field scenarios, excited initial states, etc.)
 - beyond local type! [D. Baumann 2009]

mm Universe 2025 University of Chicago, June 23-27, 2025

<u>Uncertainty in galaxy bias</u>

 kSZ mitigates loss of constraining power due to astrophysical uncertainties

mm Universe 2025 University of Chicago, June 23-27, 2025

<u>Uncertainties in ΛCDM parameters</u>

- kSZ helps measure cosmological parameters, break degeneracies
- CMB measurements pin down LCDM, slightly reduce efficacy of kSZ

Experimental details: galaxy survey

 Largest wavelengths (smallest k modes) are the most important

Avery Tishue June 25, 2025

Experimental details: CMB

Higher resolution CMB experiment

Avery Tishue June 25, 2025

<u>Past...</u>

Planck PR3+BAU:	
 necessarily lensed 	Planck
 no lensing reconstruction 	
 similar to baseline (S4+LSST) results 	Planck

[AJT et. al. 2025]

Baseline Forecasts

Details:

- ► LSSTY10 + CMBS4
- ► DESI BAO
- Include realistic effects (photo-z, RSD, galaxy bias model)
- CMB includes:
- White noise, moving lens and kSZ effects, tSZ, CIB, radio point sources
- Planck optical depth prior
- LSST bins:

z	$V [{ m Gpc}^3]$	$n_g [{ m Mpc}^{-3}]$	b_1
0.2	5.2	$5 imes 10^{-2}$	1.05
0.7	43.6	$2 imes 10^{-2}$	1.37
1.3	75.9	$6 imes 10^{-3}$	1.79
1.9	89.3	$1.5 imes 10^{-3}$	2.22
2.6	119.9	$3 imes 10^{-4}$	2.74

Key Questions:

"What does kSZ add that isn't already in the galaxy and CMB survey used to facilitate the velocity reconstruction?" • Compare $[S4 + P_{gg}]$ to $[S4 + P_{gg} + kSZ]$

 "How effective is kSZ as a sole," independent probe of growth?" Remove all CMB lensing info Marginalize over RSD bias, $b_{\rho} \ni b_{\rm rsd} f \mu^2$

Avery Tishue June 25, 2025

<u>"Minimal" Scenarios (Fewer Probes)</u>

- Remove DESI BAO & τ prior
 - constraints degrade significantly
 - ► kSZ: 5% improvement
- Ignore CMB info e.g. compare [galaxies] to [galaxies + kSZ]
 - "how complementary can kSZ be?"
 - weak constraints $\mathcal{O}(10^2) \,\mathrm{meV}$
 - kSZ: 10% improvement over galaxies alone, mostly from f(k)

Upshot: appreciable neutrino mass information from kSZ, mostly from scale-dependent growth, but it is overshadowed by other probes.

