Time-Domain Science in the Era of the Simons Observatory

> mm-Universe June 26th 2025

1

T

TE

PC: Nicholas Galitzki

Time-Domain Science in the Era of the Simons Observatory

> mm-Universe June 26th 2025

- The Simons Observatory
- Current state of the field
- mm-wave time-domain in the era of SO

I

TE

Time Domain Astrophysics

Tidal Disruption Events

Stellar Flares

Variable AGN

Training the Next Generation

Extragalactic Astronomy

Missing Baryons

Sources

Galaxy Clusters

Interstellar Dust

Star Formation, Magnetic Fields and Turbulence

Exo-Oort Clouds

Planet 9

Cosmology and Particle Physics

H_o Tension and New Physics

Light Relics and Neutrinos

The Evolution of the Universe Over Cosmic Time

Observatory Telescopes (LAT)

Survey ~50% of the sky on a ~daily cadence. 6 frequency bands ([27/34,] 93/145, 225/280 GHz)

Observatory Telescopes (LAT)

Survey \sim 50% of the sky on a \sim daily cadence. 6 frequency bands ([27/34,] 93/145, 225/280 GHz)

Target daily sensitivity:

27 mJy at 27 GHz 19 mJy at 39 GHz 7 mJy at 93 GHz Similar to SPT3G 9 mJy at 145 GHz single obs 17 mJy at 225 GHz 34 mJy at 280 GHz

Current State of the [mm-wave survey] Field

ACT- Jon Ward

SPT - Yuya Makino

More stellar flares; one nova

CMB Survey	1 yr transient search Stellar flares		AC Bie	T Depth-1 Transients rmann et al	
Timeline	Two ~weeks long likely from AGN	Two ~weeks long flares, likely from AGN		Stacking on known transients	
Planck TDE Yuan et al IGR J12580+0134	SPT3G 15 Guns et al	00d	ACT follow-up Hervias-Caimap	o et al	
2016 2017 2018	2019 2020	2021	2022 2023 Automated Alerts	2024	
SPTpol 100d Whitehorn et al	ACT planet 9 Naess et al		ACT 3 day Li et al	SPT3G 1500d Tandoi et al	
~2 week flare no counterpart	Serendipitous trans Stellar flares	ients	Stellar flares	4yr 1500d < 4 day >100 stellar flares	

Of course, there have also been many targeted mm observations of transients discovered at other wavelengths as well.

In 2022, a nice review + prediction of millimeter transients in current and future CMB surveys was presented by Eftekhari et al.

GRB Reverse Shocks!

GRB Reverse Shocks!

* ACT depths variable (as well as re-observation cadence)

GRB Reverse Shocks!

Single observations of a point on the sky really only observed for ~15-20 minutes

104 Typical z=1 **High Energy** RS ($\Gamma = 200$) 95GHz RS ($\Gamma = 100$) 10³ RS ($\Gamma = 50$) Flux Density (mJy) ACT depth-1 10² ACT 3 day SPT SO 10¹ FS 100 10^{-3} 10-2 10^{-4} 10^{-1} 100 10¹ 10² Time Since Burst (days)

As you go to shorter times, you are reducing the number of detector-seconds on target

Current State Summary

- Models suggest we should observe several GRB RS per year, however no extragalactic bona-fide transients discovered in ACT or SPT-3G surveys.
- Need to understand detection efficiency as a function of flare parameters, especially on short timescales.
- Need to search for longer duration events, and to understand how to separate AGN from transients.

Simons Observatory Time Domain Pipeline

Make daily maps

Make daily maps

Record fluxes of known sources

Make daily maps

Record fluxes of known sources (including asteroids)

desiderata, 28-May-2021:10:59:41.00

Search each map for new sources

Also stack weekly / monthly / yearly maps

rinse + repeat

Send alerts on interesting objects

So... what's new?

So... what's new?

Developing an extremely flexible and modular pipeline.

Open source!

Data Management

- Full Maps Processed in 6 Months
- Daily Transient Alerts
- Verification and Systematics Mitigation

Deliver TO THE PUBLIC:

- ~7,500 bright AGN light curves with ~daily cadence.
- Alerts of transients within 30 hours of detection.
- Open source software for map-based source detection and monitoring.

Public data availability with nice user-interfaceable frontends

Daily maps with ~SPT-3G single-obs depth (~8mJy) over 10x the area

AND coverage of the galactic plane!

SO detects thermal emission from the International Space Station!

Estimated to be on the order of 100 Jy at 100 GHz!

In summary,

SO will lead the field in public time-domain deliverables:

- Open source software to analyze maps for time-domain science and deliver light curves.
- ~7,500 AGN on a nearly daily cadence (~12,000 averaged weekly)
- Measurement of O(1000) asteroid regoliths with "real-time" monitoring of several large asteroids.
- Alert on detected transients within 30 hours and provide publicly accessible light curves.

And the most exciting of all is the unknowns!

Backup Slides

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

Science drivers for future CMB transient considerations

"True transient events"

Active galactic nuclei (AGNs)

Relatively well studied (at least the luminous ones...)

- Stellar flares
- Solar system objects (Asteroids, deep solar system objects?)

Interest / science unknown

• Gravitational wave systems (i.e. NS-NS merger)

Neutrino events

... a man can dream!

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

Science drivers for future CMB transient considerations

"True transient events"

A REVERSE SHOCK IN GRB 181201A

TANMOY LASKAR¹, HENDRIK VAN EERTEN¹, PATRICIA SCHADY¹, C. G. MUNDELL¹, KATE D. ALEXANDER^{2*},
RODOLFO BARNIOL DURAN³, EDO BERGER⁴, J. BOLMER⁵, RYAN CHORNOCK⁶, DEANNE L. COPPEJANS², WEN-FAI FONG²,
ANDREJA GOMBOC⁷, NÚRIA JORDANA-MITJANS¹, SHIHO KOBAYASHI⁸, RAFFAELLA MARGUTTI², KARL M. MENTEN⁹,
Re'EM SARI¹⁰, RYO YAMAZAKI¹¹, V. M. LIPUNOV^{12,13}, E. GORBOVSKOY¹³, V. G. KORNILOV^{12,13}, N. TYURINA¹³,
D. ZIMNUKHOV¹³, R. PODESTA¹⁴, H. LEVATO¹⁵, D. A. H. BUCKLEY¹⁶, A. TLATOV¹⁷, R. REBOLO¹⁸, AND M. SERRA-RICART¹⁸

Lidal disruption events (11) - s

Figure 8. X-ray to radio light curves of GRB 181201A, together with the FS+RS model presented in Section 4, presented together for reference. The combined model explains the overall behavior of the light curves at all 36 observing frequencies.

True transient events'

Reverse shocks may be bright at mm-waves early in burst (< ~days). [Laskar et al, 2019]

May be able to see "orphan" flares where the GRB jet is not aligned wrt viewing angle; i.e. obscured at other wavelengths. [Metzger et al, 2015]

ALEXANDER^{2*}, ANS², WEN-FAI FONG², KARL M. MENTEN⁹, 3 , N. TYURINA¹³, ND M. SERRA-RICART¹⁸

it at mm-waves ar et al, 2019]

lares where the wing angle; i.e. s. [Metzger et al,

102

squares) compared with that of GRB 161219B (grey circles; Laskar et al. 2018c), together with RS+FS models (lines). Both GRBs exhibit excess mm-band emission near the RS-FS transition, indicating additional physics not captured by the model.

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

Type 1A are well defined and understood, but is there a spectrum between core collapse SNe, GRBs and FBOTs?

Find *off-axis events*: What is the intrinsic rate?

Find *low-luminosity* GRBs: what phenomena bridge the gap between GRBs and ordinary supernovae? Find *baryonically "dirty" fireballs:* Are GRBs the extreme of a continuum extending to lower initial Lorentz factors? st ~3 day rise time)

vavelengths for days.

n detected in Swift

nt (?)

These phenomena are bright in mm waves but dark in gamma rays

Anna Ho, CMB-S4 Transients Plenary

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

AT2018cow: A Luminous Millimeter Transient

Anna Y. Q. Ho¹ (D), E. Sterl Phinney², Vikram Ravi^{1,3} (D), S. R. Kulkarni¹ (D), Glen Petitpas³, Bjorn Emonts⁴, V. Bhalerao⁵ (D), Ray Blundell³, S. Bradley Cenko^{6,7} (D), Dougal Dobie^{8,9} (D) + Show full author list Published 2019 January 23 • © 2019. The American Astronomical Society. All rights reserved. <u>The Astrophysical Journal, Volume 871</u>, Number 1 Citation Anna Y. Q. Ho *et al* 2019 *ApJ* 871 73

Discovered in optical (fast ~3 day rise time)

Bright at mm/sub-mm wavelengths for days.

Nearby (~60Mpc)

No high energy emission detected in Swift BAT/ Fermi GBM/LAT

SN in dense environment (?)

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

Science drivers for future CMB transient considerations

"True transient events"

TDEs...

Pretty big buzz word in literature right now.

Seems difficult to distinguish flares in AGN from a TDE

TDEs thought to occur in galaxies with lower central BH masses (< $10^8 M_{\odot}$; so called "intermediate mass black holes", or IMBHs)

- Gamma ray bursts (GRBs)
- Supernovae (SNe)
- Tidal disruption events (TDEs)

Need multi-wavelength observations with high cadences!

Rubin Observatory (LSST) to be online soon -- will provide optical coverage of our field

• Active galactic nuclei (AGNs)

eROSITA is currently observing , providing all-sky X-ray coverage.

- Stellar flares
- Solar system objects (Asteroids, deep solar system objects?)

- Gravitational wave systems (i.e. NS-NS merger)
- Neutrino events