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The History of Cosmic Star Formation

Zavala et al. 2021, ApJ
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Sub-mm magic See Franceschini et al. 1991  and  Blain & Longair 1993

9



mm-wave source counts
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SPT-SZ Everett et al. 2020

SPT-3G Archipley et al. in prep



mm color (⍺) v. redshift

“IRAS Galaxies” 
( z < 0.1 SFGs )

“SMGs”

( z > 1 DSFGs )

AGN / blazars / FSRQs

Everett et al. 2020 ApJ

Archipley et al. in prep
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BCS image of a dusty SPT 
source with an IRAS counterpart

r band 5σ =  24.65 AB mag

i band 5σ =  24.35 AB mag

S1.4 = 14 mJy 
S2.0 = 8 mJy
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BCS image of a dusty SPT source without any counterpart

r band 5σ =  24.65 AB mag

i band 5σ =  24.35 AB mag

S1.4 = 17 mJy 
S2.0 = 5 mJy
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100 deg2 SPIRE map 
of SPT Deep Field
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Number counts of sub/mm galaxies
see e.g. : 
Vieira et al. 2010 
Everett et al. 2020
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Number counts of sub/mm galaxies
see e.g. : 
Vieira et al. 2010 
Everett et al. 2020
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ok, so you’ve detected some blobs in the mm … 

… now what ?
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You need two things:
#1: High resolution (<arcsec) imaging 
• need an accurate position to 

associate multiwavelength data.

• need to separate un-lensed, from 

lensed, and protoclusters.

• Facilities: e.g. ALMA, NOEMA, JWST 

#2: Spectroscopy 
• You can’t do anything without a 

redshift !

• Opens up: astrophysics, ISM 

diagnostics, dynamics, etc

• Facilities: e.g. ALMA, NOEMA, JWST 
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Spectroscopic Redshifts with Carbon Monoxide (CO)

z = 2.958

Scott et al. 2011

~$15M ; 2 nights

CSO/Z-Spec

ALMA
~$1B ; 10 min

z = 4.296
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• CO is bright ! —> 2nd most abundant molecule in the universe
• CO ladder has 115 GHz spacing —> 2 lines gives a redshift
• LCO traces molecular mass, line width gives dynamical mass, SLED 

constrains conditions of ISM

Weiss et al. 2013



ALMA: The Atacama Large (sub) Millimeter Array
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See:

Vieira et al. 2013, Nature



THE SPT+ALMA BLIND SPECTROSCOPIC

REDSHIFT SURVEY OF CARBON MONOXIDE 
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Spectroscopic redshift survey with ALMA
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See:

Vieira et al. 2013, Nature 

Strandet, Weiss, Vieira et al. 2016, ApJ

Reuter, Vieira et al. 2021, ApJ



Stacked mm spectrum

Reuter, Spilker, Vieira, Marrone, Weiss et al. 2023, ApJ
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submm colors 
are a good 
redshift proxy
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Complete 
FIR-mm 
SEDs of 
81 SMGs
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Luminous SMGs

have 

<Td> ~ 40–50K
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A well-sampled FIR SED can 
provide a photometric redshift 
to ~20% accuracy
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photometry and the shape of 
the SED can constrain the gas 
depletion time


𝜏depl = Mgas / SFR


SMGs are burning their fuel 
faster than regular galaxies on 
the main sequence



Bethermin et al. 2011 CIB model
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longer wavelength surveys 
select higher redshift sources
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• With a complete spectroscopic survey, we can constrain the spatial density of 
high-redshift luminous galaxies. 


• Because the selection is independent of redshift, we can empirically measure the 
onset of massive galaxy formation.



ALMA image of SPT0311-58 @ z=6.9
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See also:

Strandet, et al. 2017, ApJ


Marrone, et al. 2018, Nature

Jarugula, et al. 2021, ApJ

Spilker, et al. 2022, ApJ

This is the most detailed look at the 
redshift ~7 Universe 

Just 800M years after the Big Bang 
This is what ALMA was MADE to do



HST / WFC3 
ALMA

W
E

Extended z = 6.9  
UV Emission Foreground Lens

[CII] 158µm Emission Volume Rendering Integrated [CII] Emission 
(dust continuum contours)
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ALMA image of SPT0311-58 @ z=6.9

Spilker, et al. 2022, ApJL
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ALMA image of SPT0311-58 @ z=6.9

Spilker, et al. 2022, ApJL
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ALMA image of SPT0311-58 
in 

MOLECULES

Jarugula, Vieira, Weiss, et al., 2021, ApJ

This is the most distant detection of water.
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13C in the Epoch of Reionization
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• The history of nucleosynthesis leaves a 
“fossil record” on the atomic and molecular 
isotopes observed in the local and distant 
universe. 

• Observations of isotopes in distant galaxies 
across cosmic time can provide powerful 
insights into the evolution of the universe, 
galaxy formation, and even the physics of 
stellar evolution. 

• While 12C nuclei are produced during 
“primary” He burning in high-mass stars on 
rapid timescales, 13C nuclei are 
“secondary,” formed in intermediate-mass 
stars undergoing CNO cycle burning (e.g. 
AGB stars), at ages of >1 Gyr. 

• Thus, at z>6 there should be no 13C. 

• We designed an experiment with ALMA to 
spend 18.7 hours in B3 at z=6.9 to observe 
or set a limit on 13CO. 

• (Spoiler: we did not detect it, so stellar 
evolution works how we think.) 

(preliminary) limit

range we would expect if 13CO/12CO 
were the same at z>6 and z<6



quark+gluon plasma

H+He forms

Universe becomes neutral

First stars and galaxies re-ionize the universe

plasma not a plasma plasma

Beginning 
of the 

Universe
Today
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The Epoch of Reionization

ALMA is now doing 
chemistry 

here



SFR 
dM★/dt

stellar 
mass 
M★

gas 
mass 
Mgas

depletion  
time 
𝜏

gas 
fraction 

fgas

sSFR

[CI]
rest-
frame 
NIR

JWST

P-αH2O

ALMAALMA
JWST

the ingredients needed to understand galaxy evolution
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James Webb Space Telescope 

JWST Early Release Science (ERS) Program
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation


PI: Jane Rigby (NASA Goddard) ; Co-PI: Joaquin Vieira (U. Illinois)

55 hours of Director’s time


see Rigby, Vieira, Phadke et al. 2024 arXiv:2312.10465

SPT0418-47 
z=4.22

SPT2147-50 
z=3.76



Source SDSS1723+34 SDSS1226+21 SPT0418-47 SPT2147-50
redshift 1.32 2.92 4.22 3.76

magnification 20 40 32 6.6

rE [arcsec] 4.7 9 1.2 1.2

M★ [M⊙] <3x1010 5x109 4.4x1010 2.0x1010

SFR [M⊙/yr] 8 40 230 1290

sSFR [Gyr-1] >3 8 5.3 64

AV 0.64—1.0 0.2—1 6 6

3”

HST/WFC3 
ALMA

3”

HST/WFC3 
ALMA

3”
3”

3”

40

JWST 
TEMPLATES 

Targets
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NIRCam imaging

MIRI imaging

JWST TEMPLATES Targets

Rigby, Vieira, Phadke et al. 2025, ApJ
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JWST TEMPLATES Targets

moment 0 maps
Rigby, Vieira, Phadke et al. 2025, ApJ



SPT0418-47 @ z = 4.2 
JWST/NIRCam Observations 
ALMA [CII] contours
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* The foreground lens has been subtracted and there is still a residual astrometry offset in the JWST image.



SPT0418-47 @ z = 4.2 
JWST/NIRCam Observations
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Work by U. Florida  
grad student  
Jared Cathey

source plane reconstruction 
from gravitational lensing model

Cathey et al. 2023 
arXiv:2307.10115



SPT0418-47 @ z = 4.2 
JWST ERS IFU Observations

Hα 0.6563μm 
Balmer series

Hydrogen 3–>2

JWST/NIRSpec

Although we are missing the H-β line, 
which means we haven’t measured the 
traditional BPT diagnostics, we have a 
robust spatially resolved detection of the 
sulfur lines, which allows us to constrain 
temperature.


Pa-α 1.875μm 
Paschen Series 

Hydrogen 4–>3

JWST/MRS

This line is considered the “gold 
standard” for star formation rate 
indicators.

This is the highest redshift detection of 
Pa-α to-date (previous was at z=2.5 with 
Spitzer) and the first spatially resolved 
observations of this line outside of the 
nearby universe.


PAH 3.3μm 
polycyclic aromatic hydrocarbon 
JWST/MRS 
This is the most distant detection of any 
PAH feature and the first time PAH 
emission has been spatially resolved 
outside the local universe.
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Spatially resolved PAH 3.3 µm at z=4.2
Spilker et al. 2023, Nature

PAH 3.3µm integrated 1D spectrum PAH 3.3µm mom 0 PAH 3.3µm / LIR ratio
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SPT0202-61

z = 5.018

SPT0311-58

z = 6.901

SPT0345-47

z = 4.296

SPT0346-52

z = 5.655

SPT0418-47

z = 4.225

SPT0441-46

z = 4.480

SPT2132-58

z = 4.768

SPT2146-55

z = 4.567

SPT2147-50

z = 3.760
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Expected high redshift source yield for future CMB surveys

mm-wave CMB surveys will detect: 
- 100s of dusty galaxies at z>7

- dusty galaxies out to z~9

- this is what is guaranteed … still lots of room for DISCOVERY ! 48

from the SIDES simulations

Béthermin et al. 2017, 2022



Most distant astronomical object
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where will the next haul of high redshift objects come from?

• New technologies, instruments, and surveys have traditionally opened the window to the high redshift universe. 
• Deep, narrow surveys have led the redshift frontier for “normal” galaxies, while wide, shallower surveys have led the redshift 

frontier for extreme objects such as QSOs and GRBs. 
• High redshift SMGs began in deep fields, but are now discovered in wide field sub/mm surveys, in particular, from ground-based 

mm-wave CMB surveys. 
• Ground-based optical surveys have hit a wall at z=6 because of the Lyman break and the atmosphere. Ground based radio and 

mm-wave surveys should be able to extend to z>9 in the coming years. 
• Space-based telescopes such as JWST can probe deep fields and provide crucial spectroscopic confirmations. Wide-field 

space-based telescopes such as Euclid and Roman should push beyond the current redshift horizon, but will require 
spectroscopic followup for confirmation.

HDF HUDF HXDF

JWSTALMA

SPT-3G 
ASO

Roman



ALMA

ALMA JWST

the ingredients needed to understand galaxy evolution

These facilities are great for: 
- deep blind surveys

- pointed spectroscopic observations

What about the missing discovery space? 
- the spectroscopic coverage gap (ie using the same observables 

over cosmic time) 

- wide field surveys (ie discovering new sources)



SPT-SMG Group May 2025 in Urbana
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Conclusions
• In addition to cosmology, CMB surveys are 

making important contributions to 
astrophysics. 

• mm wave selected sources are important for 
understanding galaxy evolution at all epochs, 
in particular the mechanism of massive galaxy 
formation at high redshift. 

• The combination of wide surveys, gravitational 
lensing, ALMA, and JWST have allowed us to 
constrain the cosmic history, evolution, 
composition, and chemistry, of massive 
galaxies across cosmic time. 

• We have another 5+ years of JWST, 20+ with 
ALMA, and even though things may look grim 
at the moment, it’s kind of a nice moment to 
pause and reflect on the amazing tools 
humans have built and we are allowed to play 
with today.

Funded by :
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Spignolio 1992 and 2009 

Fine structure lines

• Major coolants for ISM in DSFGs ⇒ C+ can be ~0.1% of total LFIR

• extinction free probe of physical conditions of gas and radiation fields
• ratio of lines disentangles relative SF and AGN contribution
• ISO studied z~0, progress being made with Herschel, APEX, ALMA at 

high redshift 

DSFG = dusty star forming galaxy
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Bethermin et al. 2011 CIB model

Longer wavelengths probe 
higher redshift components of 
the CIB

How to get redshifts?

Photo-z's are unreliable. 

Coarse beam + faint, dust 
obscured objects at high redshift 
make optical spectroscopic 
redshifts very difficult. 



100 deg2 of SPT-3G sources 

95 GHz 
150 GHz 
220 GHz
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The SPT 1.4mm redshift distribution
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Strandet et al. 2016
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Spectrum of the Cosmic Background



Cosmic Dust
• Dust was first noticed a century ago by astronomers 

attempting to understand the structure the Milky Way 

• The Infrared Astronomical Satellite (IRAS) satellite enabled 
the systematic study of dust in 1983. 

• The Cosmic Background Explorer (COBE) satellite showed 
that half of the energy produced since the Big Bang has 
been absorbed and reemitted by dust. 

• The majority of dust mass is produced by stars at the end of 
their lives, either by asymptotic giant branch (AGB) stars or 
super novae (SN) remnants. 

• Star formation always occurs behind a dense shroud of dust. 

• Dust is a crucial constituent in the formation and evolution of 
everything from planets to super massive black holes. 

• Dust represents the rise of complex chemistry in the early 
universe and may even be a catalyst for the ingredients 
necessary for life

Dole et al. 2006

Milky Way 
by Pan-STARRS
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Why the Far-Infrared (FIR) ?

Conroy ARA&A 2013

The majority of energy produced/released since the Big Bang 
has been absorbed and reprocessed by dust. 

“God lives at 100 microns” 
—Alan Sandage
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mm color verses redshift

“IRAS Galaxies” 
( z < 0.1 SFGs )

“SMGs”

( z > 1 DSFGs )

AGN / blazars / FSRQs
Everett et al. 2020 ApJ
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mm-wave source counts
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SPT-3G Archipley et al. in prep 
SPT-SZ Everett et al. 2020
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