

The Nature of mm-Selected Dusty Galaxies

Joaquin Vieira **ILLINOIS** mm Universe / KICP 25 June 2025

The History of Cosmic Star Formation

Simulation Chris Hayward

Simulation Chris Hayward

Cold streams, or tidal streams from mergers

Turbulent reservoir

30 000 light-years

mm-wave source counts

SPT-SZ Everett *et al.* 2020 SPT-3G Archipley *et al. in prep*

mm color (α) v. redshift

BCS image of a dusty SPT source with an IRAS counterpart

r band 5σ = 24.65 AB mag band 5σ = 24.35 AB mag $S_{1.4} = 14 \text{ mJy}$ $S_{2.0} = 8 \text{ mJy}$ BCS image of a dusty SPT source without any counterpart

r band 5σ = 24.65 AB mag i band 5σ = 24.35 AB mag $S_{1.4} = 17 \text{ mJy}$ $S_{2.0} = 5 \text{ mJy}$

100 deg² SPIRE map of SPT Deep Field

Number counts of sub/mm galaxies

Number counts of sub/mm galaxies

ok, so you've detected some blobs in the mm ...

... now what ?

You need two things:

#1: High resolution (<arcsec) imaging

- need an accurate position to associate multiwavelength data.
- need to separate un-lensed, from lensed, and protoclusters.
- Facilities: e.g. ALMA, NOEMA, JWST

#2: Spectroscopy

- You can't do anything without a redshift !
- Opens up: astrophysics, ISM diagnostics, dynamics, etc
- Facilities: e.g. ALMA, NOEMA, JWST

Spectroscopic Redshifts with Carbon Monoxide (CO)

- CO is bright ! —> 2nd most abundant molecule in the universe
- CO ladder has 115 GHz spacing —> 2 lines gives a redshift
- L_{CO} traces molecular mass, line width gives dynamical mass, SLED constrains conditions of ISM

ALMA: The Atacama Large (sub) Millimeter Array

See: Vieira *et al.* 2013, *Nature*

THE SPT+ALMA BLIND SPECTROSCOPIC REDSHIFT SURVEY OF CARBON MONOXIDE

CO(5-4) v_{rest} = 576 GHz 4 < z < 5.8

[CI](1-0) v_{rest} = 492 GHz 3 < z < 4.4

CO(4-3) v_{rest} = 461 GHz 3 < z < 4.4

84 GHz observed frequency [GHz] 116 GHz

Spectroscopic redshift survey with ALMA

Stacked mm spectrum

Reuter, Spilker, Vieira, Marrone, Weiss et al. 2023, ApJ

C. Reuter¹, J. D. Vieira^{1,2,3}, J. S. Spilker^{4,23}, A. Weiss⁵, M. Aravena⁶, M. Archipley¹, M. Béthermin⁷, S. C. Chapman^{8,9,10}, C. De Breuck¹¹, C. Dong¹², W. B. Everett¹³, J. Fu¹, T. R. Greve^{14,15}, C. C. Hayward¹⁶, R. Hill⁸, Y. Hezaveh^{16,17}, S. Jarugula¹, K. Litke¹⁸, M. Malkan¹⁹, D. P. Marrone¹⁸, D. Narayanan^{15,20,21}, K. A. Phadke¹, A. A. Stark²², and M. L. Strandet⁵

Complete FIR-mm SEDs of 81 SMGs

C. Reuter¹, J. D. Vieira^{1,2,3}, J. S. Spilker^{4,23}, A. Weiss⁵, M. Aravena⁶, M. Archipley¹, M. Béthermin⁷, S. C. Chapman^{8,9,10}, C. De Breuck¹¹, C. Dong¹², W. B. Everett¹³, J. Fu¹, T. R. Greve^{14,15}, C. C. Hayward¹⁶, R. Hill⁸, Y. Hezaveh^{16,17}, S. Jarugula¹, K. Litke¹⁸, M. Malkan¹⁹, D. P. Marrone¹⁸, D. Narayanan^{15,20,21}, K. A. Phadke¹, A. A. Stark²², and M. L. Strandet⁵

A well-sampled FIR SED can provide a photometric redshift to ~20% accuracy Zphotometric Zspectroscopic

- With a complete spectroscopic survey, we can constrain the spatial density of high-redshift luminous galaxies.
- Because the selection is independent of redshift, we can empirically measure the onset of massive galaxy formation.

ALMA image of SPT0311-58 @ z=6.9

This is the most detailed look at the redshift ~7 Universe Just 800M years after the Big Bang This is what ALMA was MADE to do

See also: Strandet, *et al.* 2017, ApJ Marrone, *et al.* 2018, Nature Jarugula, *et al.* 2021, ApJ Spilker, *et al.* 2022, ApJ

ALMA image of SPT0311-58 @ z=6.9

ALMA image of SPT0311-58 @ z=6.9

Spilker, et al. 2022, ApJL

ALMA image of SPT0311-58 in MOLECULES

Dust Continuum 140GHz H20 CO 6-5 CO 7-6

CO 10-9

This is the most distant detection of water. Jarugula, Vieira, Weiss, *et al.*, 2021, ApJ

¹³C in the Epoch of Reionization

- The history of nucleosynthesis leaves a "fossil record" on the atomic and molecular isotopes observed in the local and distant universe.
- Observations of isotopes in distant galaxies across cosmic time can provide powerful insights into the evolution of the universe, galaxy formation, and even the physics of stellar evolution.
- While ¹²C nuclei are produced during "primary" He burning in high-mass stars on rapid timescales, ¹³C nuclei are "secondary," formed in intermediate-mass stars undergoing CNO cycle burning (e.g. AGB stars), at ages of >1 Gyr.
- Thus, at z>6 there should be no ^{13}C .
- We designed an experiment with ALMA to spend 18.7 hours in B3 at z=6.9 to observe or set a limit on ¹³CO.
- (Spoiler: we did *not* detect it, so stellar evolution works how we think.)

range we would expect if ¹³CO/¹²CO were the same at z>6 and z<6

The Epoch of Reionization

the ingredients needed to understand galaxy evolution

James Webb Space Telescope

SPT0418-47 z=4.22

SPT2147-50 z=3.76

JWST Early Release Science (ERS) Program

TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation PI: Jane Rigby (NASA Goddard) ; Co-PI: Joaquin Vieira (U. Illinois) 55 hours of Director's time see Rigby, Vieira, Phadke *et al.* 2024 arXiv:2312.10465

Source	SDSS1723+34	SDSS1226+21	SPT0418-47	SPT2147-50
redshift	1.32	2.92	4.22	3.76
magnification	20	40	32	6.6
r _E [arcsec]	4.7	9	1.2	1.2
M★ [M₀]	<3x10 ¹⁰	5x10 ⁹	4.4x10 ¹⁰	2.0x10 ¹⁰
SFR [M₀/yr]	8	40	230	1290
sSFR [Gyr ⁻¹]	>3	8	5.3	64
Av	0.64-1.0	0.2-1	6	6

JWST TEMPLATES Targets

NIRCam imaging

MIRI imaging

JWST TEMPLATES Targets

moment 0 maps

SPT0418-47 @ z = 4.2 JWST/NIRCam Observations ALMA [CII] contours

* The foreground lens has been subtracted and there is still a residual astrometry offset in the JWST image.

SPT0418-47 @ z = 4.2 JWST/NIRCam Observations

source plane reconstruction from gravitational lensing model Cathey *et al. 2023* arXiv:2307.10115

Work by U. Florida grad student Jared Cathey

SPT0418-47 @ z = 4.2 JWST ERS IFU Observations

Ha 0.6563µm

Balmer series

Hydrogen 3->2

JWST/NIRSpec

Although we are missing the H- β line, which means we haven't measured the traditional BPT diagnostics, we have a robust spatially resolved detection of the sulfur lines, which allows us to constrain temperature.

Pa-α 1.875µm

Paschen Series

Hydrogen 4->3

JWST/MRS

This line is considered the "gold standard" for star formation rate indicators.

This is the highest redshift detection of Pa- α to-date (previous was at z=2.5 with *Spitzer*) and the first spatially resolved observations of this line outside of the nearby universe.

PAH 3.3µm

polycyclic aromatic hydrocarbon *JWST*/MRS

This is the most distant detection of any PAH feature and the first time PAH emission has been spatially resolved outside the local universe.

A DEC (arcsec)

Spatially resolved PAH 3.3 μ m at z=4.2

Article

Spilker et al. 2023, Nature

Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy

https://doi.org/10.1038/s41586-023-05998-6

Received	d: 14 January 2023
----------	--------------------

Accepted: 21 March 2023

Published online: 05 June 2023

Check for updates

Justin S. Spilker¹[⊠], Kedar A. Phadke^{2,3}, Manuel Aravena⁴, Melanie Archipley^{2,3}, Matthew B. Bayliss⁵, Jack E. Birkin¹, Matthieu Béthermin⁶, James Burgoyne⁷, Jared Cathey⁸, Scott C. Chapman^{7,9,10}, Håkon Dahle¹¹, Anthony H. Gonzalez⁸, Gayathri Gururajan^{6,12,13}, Christopher C. Hayward¹⁴, Yashar D. Hezaveh^{14,15,16,17}, Ryley Hill⁷, Taylor A. Hutchison¹⁸, Keunho J. Kim⁵, Seonwoo Kim², David Law¹⁹, Ronan Legin^{14,15,16,17}, Matthew A. Malkan²⁰, Daniel P. Marrone²¹, Eric J. Murphy²², Desika Narayanan^{8,23,24}, Alex Navarre⁵, Grace M. Olivier¹, Jeffrey A. Rich²⁵, Jane R. Rigby¹⁸, Cassie Reuter^{2,3}, James E. Rhoads¹⁸, Keren Sharon²⁶, J. D. T. Smith²⁷, Manuel Solimano⁴, Nikolaus Sulzenauer²⁸, Joaquin D. Vieira^{2,3,29}, David Vizgan², Axel Weiß²⁸ & Katherine E. Whitaker^{24,30}

ntegrated intensity (10⁻⁹ W m⁻² sr⁻¹)

PAH 3.3µm integrated 1D spectrum

PAH 3.3µm mom 0

PAH 3.3µm / L_{IR} ratio

Expected high redshift source yield for future CMB surveys

mm-wave CMB surveys will detect:

- 100s of dusty galaxies at z>7
- dusty galaxies out to z~9
- this is what is guaranteed ... still lots of room for **DISCOVERY** !

where will the next haul of high redshift objects come from?

Most distant astronomical object

- New technologies, instruments, and surveys have traditionally opened the window to the high redshift universe.
- Deep, narrow surveys have led the redshift frontier for "normal" galaxies, while wide, shallower surveys have led the redshift frontier for extreme objects such as QSOs and GRBs.
- High redshift SMGs began in deep fields, but are now discovered in wide field sub/mm surveys, in particular, from ground-based mm-wave CMB surveys.
- Ground-based optical surveys have hit a wall at z=6 because of the Lyman break and the atmosphere. Ground based radio and
 mm-wave surveys should be able to extend to z>9 in the coming years.
- Space-based telescopes such as *JWST* can probe deep fields and provide crucial spectroscopic confirmations. Wide-field space-based telescopes such as *Euclid* and *Roman* should push beyond the current redshift horizon, but will require spectroscopic followup for confirmation.

the ingredients needed to understand galaxy evolution

These facilities are great for:

- deep blind surveys
- pointed spectroscopic observations

What about the missing discovery space?

- the spectroscopic coverage gap (ie using the same observables over cosmic time)
- wide field surveys (ie discovering new sources)

Conclusions

- In addition to cosmology, CMB surveys are making important contributions to astrophysics.
- mm wave selected sources are important for understanding galaxy evolution at all epochs, in particular the mechanism of massive galaxy formation at high redshift.
- The combination of wide surveys, gravitational lensing, ALMA, and JWST have allowed us to constrain the cosmic history, evolution, composition, and chemistry, of massive galaxies across cosmic time.
- We have another 5+ years of JWST, 20+ with ALMA, and even though things may look grim at the moment, it's kind of a nice moment to pause and reflect on the amazing tools humans have built and we are allowed to play with today.

Funded by :

Carbon Monoxide excitation ladder:

constrains conditions of molecular gas and the radiation fields

DSFG = dusty star forming galaxy

Fine structure lines

- Major coolants for ISM in DSFGs \Rightarrow C+ can be ~0.1% of total L_{FIR}
- extinction free probe of physical conditions of gas and radiation fields
- ratio of lines disentangles relative SF and AGN contribution
- ISO studied z~0, progress being made with *Herschel*, APEX, ALMA at high redshift 55

Longer wavelengths probe higher redshift components of the CIB

How to get redshifts?

Photo-z's are unreliable.

Coarse beam + faint, dust obscured objects at high redshift make optical spectroscopic redshifts very difficult.

100 deg² of SPT-3G sources

100 sq degree field

The SPT 1.4mm redshift distribution

long wavelength selection strong lensing selection Hezaveh & Holder 2011 lens model 6 10 5 10 Strandet et al. 2016 $S_{870\mu m}$ / $S_{1.4mm}$ 10 4 (<u>№</u> 10 10 3 10 delensed 1.4mm 2 10 redshift distribution 10 2 3 4 5 0.6 Delensed Bethermin 2012 CIB mode +Bethermin lensed Hezaveh lens model combined effect 0.5 dn/dz [normalized] Bethermin unlensed 3 observed $850 \,\mu m < z > = 2.6$ 0.4 distribution 1.4 mm < z > = 2.81.4 mm lensed $\langle z \rangle = 3.2$ 0.3 2 dn/dz 0.2 1 0.1 0.0 0 2 3 5 6 7 Δ 2 6 8 0 4

Ζ

Ζ

Spectrum of the Cosmic Background

Milky Way by Pan-STARRS

Cosmic Dust

- Dust was first noticed a century ago by astronomers attempting to understand the structure the Milky Way
- The Infrared Astronomical Satellite (IRAS) satellite enabled the systematic study of dust in 1983.
- The Cosmic Background Explorer (COBE) satellite showed that half of the energy produced since the Big Bang has been absorbed and reemitted by dust.
- The majority of dust mass is produced by stars at the end of their lives, either by asymptotic giant branch (AGB) stars or super novae (SN) remnants.
- Star formation *always* occurs behind a dense shroud of dust.
- Dust is a crucial constituent in the formation and evolution of everything from planets to super massive black holes.
- Dust represents the rise of complex chemistry in the early universe and may even be a catalyst for the ingredients necessary for life

Why the Far-Infrared (FIR) ?

"God lives at 100 microns" —Alan Sandage

The majority of energy produced/released since the Big Bang has been absorbed and reprocessed by dust.

mm color verses redshift

mm-wave source counts

SPT-3G Archipley *et al. in prep* SPT-SZ Everett *et al.* 2020

