New views of cosmic gas from Atacama Cosmology Telescope observations of the millimetre sky

William Coulton with Adri Duivenvoorden, Lucas Kuhn, Zack Li and the ACT collaboration

Atacama Cosmology Telescope (ACT)

2007 - 2022

Argonne

Component Separation

- The aim is to isolate signal of interest
- Utilize different spatial and frequency dependence of signals
- Combine different experiments with different noise/resolution etc
- Challenge: how to exploit different spatial properties of each component?

Map of the signal of interest

Dickinson (2016), ESA

Thermal Sunyaev Zel'dovich effect

Our new Compton-y map

What is the relativistic Sunyaev Zeldovich effect?

• The usual tSZ formula:

 $\delta I(\mathbf{n},\nu) = g(\nu)y(\mathbf{n})$

assumes non-relativistic electron ($T_e < < m_e c^2/k_B$)

- X-ray measurements show that $T_e\gtrsim$ few keV !
- For relativistic electrons: $\delta I(\mathbf{n}, \nu, T_e) = g(\nu, T_e)y(\mathbf{n})!$

Relativistic SZ signature for electrons at different temperatures

How does this appear on the sky?

Done with Lucas Kuhn and Zack Li

A simulated ~40 degree² patch of the (web)-sky

Non-relativistic tSZ

rSZ -(tSZ+kSZ)

How do we measure it?

• Expand around a mean temperature, \overline{T} :

$$\Delta I(\mathbf{n},\nu) = \sum_{i=0} \tilde{g}_{(i)}(\nu,\bar{T}) \left(T_e - \bar{T}\right)^i y(\mathbf{n})$$

• The zeroth order term is:

$$\Delta I(\mathbf{n},\nu) = \tilde{g}_0(\nu,\bar{T})y(\mathbf{n}) \text{ with } y(n) = \int n_e T_e dl$$

ſ

• Whilst the first order term is now:

$$\Delta I^{(1)}(\mathbf{n},\nu) = y(\mathbf{n}) \times (T_e(\mathbf{n}) - \bar{T})g_{(1)}(\nu,\bar{T})$$

- Can use this to do "spectroscopy"!
- Current SNR per object is low, so we do this for a stack of clusters Remazeilles and Chluba (2020)

Measure: $y(\mathbf{n})(T_e(\mathbf{n}) - \overline{T}_e)$ where \overline{T}_e is a trial temperature

Remazeilles and Chluba (2020)

Our measurement

How well do we constrain the temperature?

The mean temperature of the 4690 ACT clusters compared to other measurements

Consistency and robustness tests

(similar test was done for CIB) <u>1e-5</u> Faint Sources - $\bar{T}_e = 0.1 \text{ keV}$ 0.25 Ŧ 8-Baseline Ŧ Faint Sources - $\overline{T}_e = 5$ keV Min SNR=6 Ŧ Faint Sources - $\overline{T}_e = 10 \text{ keV}$ 6-0.20 $\ell_{\rm min}\,{=}\,1000$ I I X Faint Sources - $\overline{T}_e = 20 \text{ keV}$ Posterior PDF (keV⁻¹) Filtered $y(T_e-ar{T}_e)$ (keV) 4 -Bright Sources - $\overline{T}_e = 0.1 \text{ keV}$ $\ell_{\rm max} = 2500$ ¥ Data measurement $\bar{T} = 0.1 \, keV$ 60% Dust mask 0.15 2 -No ACT 220 GHz 0 0.10 -2 -Ŧ 0.05 -4 Ŧ -6-12.5 5.0 10.0 15.0 17.5 2.5 7.5 20.0 0.0 -8 \bar{T}_e keV 2 8 4 6 θ (arcmin)

Test of different analysis choices

Test for biases from radio sources

From profiles to physics

Instead of measuring the entire stack, we can subdivide and search for evolution

The Simons Observatory

The Simons Observatory

The future is relatively hot!

Forecast constraints for how well Simons Observatory can constrain the mean temperature for stacks of clusters

From cluster samples to physics

Forecast constraints on temperature-massredshift relations with Simons Observatory rSZ measurements only With X-ray prior $T_e = T_0 M^{\alpha} (1+z)^{\beta}$ ~⁹⁰ Mass dep., lpha~[?] 0.0 0.0 ,0,0 Þ Redshift dep., etav ~⁶ 0,0 0,0 ,0^{,6} 0°000° 2° 2° 00 5° 1° 2° 0° 0° 0° 0° 2° 2° 2⁵ Mass dep., α Redshift dep., β Pivot Temp. T_0

The challenge of instrumental systematics

A comparison of forecast SO measurements vs instrumental systematics uncertainties

What is the patchy-screening effect?

Image by Darby Kramer

Schutt et al including WRC (2024)

An upper limit on the gas density around unWISE galaxies from ACT

Comparison of measured 1D profile to a set of theoretical models

Conclusions

- Publicly available ACT+Planck Compton-y map here
- Measuring the rSZ is hard!
 - Requires high resolution, low noise measurements ... especially at high frequencies
 - A very precise characterisation of the instrument!
- We have made a $\sim 4\sigma$ measurement of the effect
- SO will dramatically improve this to $> 20\sigma$ and provide interesting constraints on temperature evolution!
 - Providing we can constrain the systematics
 - Can we be smarter about mitigating the CIB?