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The landscape of current (sub-)mm single dish telescopes

-m facilities have a FoV limited to ~ 4-20 arcmin, apart from a few dedicated small aperture (6-10 meter),
~1-2 arcmin resolution survey telescopes (SPT, CCAT/FYST, SO)
Further, no existing large (D > 15 m) aperture telescopes can observe v,;,; > 350 GHz
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Completing our ability to map the multiwavelength sky
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First light SKA-Low image (~25 sq. deg).
Credit:

We can image (roughly)
degree fields at a time
across the sky with few
arcsec resolution at
every wavelength
exceptthe submm!
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First light IR (0.75-5 micron) images from NASA's Spectro-
Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explorer (SPHEREX).

Credit: : issi -

Dark Energy Srvey (DES) has a 2.2 deg wide
instantaneous field of view.

Credit: Dark Energy
Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA
Acknowledgments: T.A. Rector (University of Alaska
Anchorage/NSF NOIRLab), J. Miller, M. Zamani & D. de
Martin (NSF NOIRLab)

Rubin Observatory will cover 9.6 deg? per pointing
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ALMA, <1 arcmin field at 90 GHz, <10
arcsec field at frequencies >500 GHz.
Credit: ESO/B. Tafreshi

Chandra X-ray observatory mosaic of
16°’x16’pointings on the Perseus Cluster.
Credit: NASA/CXC/GSFC/ S.A.Walker, et
al.
https://chandra.harvard.edu/photo/201
Z/perseus/
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Completing our ability to map the multiwavelength sky

First light SKA-Low image (~25 sq. deg).
Credit:
firstoli o

We can image (roughly)
degree fields at a time
across the sky with few
arcsec resolution at
every wavelength
exceptthe submm!
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Chandra X-ray observatory mosaic of
16°’x16’pointings on the Perseus Cluster.

NOIRLab/NSE/AURA Credit: NASA/CXC/GSFC/ S.A.Walker, et

niversity of Alaska al. )
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Z/perseus/
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Plot above shows the resolutions and frequency coverages
across many bands for several degree-scale facilities

1 arcmin field at 90 GHz, <10
ield at frequencies >500 GHz.
:SO/B. Tafreshi
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Parameter Value
Wavelength (A) range 0.3-10 mm
Primary mirror (M1) diameter o0m
Secondary mirror (M2) diameter 12m

Field of view (FoV) 2°(1°)
Number of instrument mount points 6

Optical design Ritchey-Chrétien
Night(Day)-time half wavefront error 20 (30) um
Mechanical pointing accuracy 2.5 arcsec
Astronomically-corrected pointing < 0.5 arcsec
Solar observations Yes

Scan speed 3°/s
Acceleration 1°/s?
Elevation (EL) range 20° to 90°
Azimuthal (AZ) range +270°
Mount type AZ-EL

Site location 22°58'52"S, 67°45'56"W
Site elevation =5000 m

AtLAST technical specifications (see
Mroczkowski et al. 2025).

The 50-meter primary mirror yields a
resolution of 1.5” at 350 um and 10” at 2
mm.

Fast scanning will allow recovery of
large angular scales, ensuring high
fidelity imaging (see van Marrewijk et al.
2024).

Mechanical pointing accuracy is before
any astronomical pointing model
corrections.
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https://ui.adsabs.harvard.edu/abs/2025A%26A...694A.142M/abstract
https://ui.adsabs.harvard.edu/abs/2024OJAp....7E.118V/abstract
https://ui.adsabs.harvard.edu/abs/2024OJAp....7E.118V/abstract

Surface accuracy vs atmospheric transmission

e Plotted on the right: Ruze
efficiency for 20 micron
(blue solid, nighttime)
and 30 micron (blue
dashed, daytime) RMS
surface errors (from
Mroczkowski et al. 2025)

e Black and grey curves
show the median and top
quartile transmission.

e These are well matched -
surface accuracy will not
be the limiting factor for
high frequency
observations.
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Near vs far-field effects

* Large aperture telescopes
probe a larger column of
atmosphere, with smaller
separation from beam to
beam, leaving the
atmospheric signal more
correlated (van Marrewijk,
Morris, et al. 2024).

* New results from Thomas
Morris show this large
beam effectively low pass
filters the atmosphere and

lowers the atmospheric

knee, enabling lower noise
on large scales!
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Combination of large aperture and FoV makes AtLAST unique
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Transformative mapping speed!
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Using a figure of merit (FoM) defined in Tools of Radio Astronomy (Wilson, Huttemeister,
Rohlfs) that is proportional to mapping speed, AtLAST is far above everything that has or
will come before it.




At last, the final SZ number counts plot of the workshop!

e Cluster count forecasts from - : : : :

Srini Raghunathan, appearin%in it o hor

the AtLAST SZ science case (Di el riEsd W -
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A more complete SZ view of clusters:

Input simulation AtLAST (Band 3)

ACA+ALMA
(Band 3)

12 arcmin
1 Mpc

-250 0 250 60 40 -20 0 20 40 60
Yisz [107°] SZ surface brightness [HKRg)]

Il Funded by _ 8 hours on source for all simulations. Assumes 50k detectors at 90
REa the European Union GHz for AtLAST mock. See Di Mascolo et al. 2025



Phase 1: AtLAST Design Study

e Officially ran from March 2021 to Aug 2024.

* Major accomplishments: 8 refereed science cases in Open Research Europe,
publication of conceptual design (Reichert et al. 2024, Mroczkowski et al. 2025) and
optical design concepts (Gallardo et al. 2024, Puddu et al. 2024), power generation
concept (Viole et al. 2024), kinetic energy recovery (Kiselev et al. 2024), operations
plan (Hatziminaoglou et al. AtLAST memo), extensive characterization of the site
wind conditions (in prep including De Breuck and Otarola), instrumentation
concepts outline (van Kampen AtLAST memo), observation simulators (van
Marrewijk, Morris, et al. 2025) and much more.

* Importantly, this initial design study identified areas that require further
development and study, and the new AtLAST2 development project (2025-2028) is

working to address those.

el Funded by
LA the European Union




Design Overview
* Exposed Rocking Chair Design

Min elevation =20 deg

Max elevation=90 deg

12m secondary

50m primary

%“‘i‘iiii

\g\\\wm'i Full cladding

Apex shutter

Elevation Structure

Instrument and
(“wheel”)

access portals

Azimuth Structure

Facility tunnel Foundation

Mroczkowski et al. 2025 (A&A 694A, 142)



Large FOV and Multiple instruments

* Optical Design, unprecedented receiver cabin space

Optical design by R. Hills (see AtLAST memo 1)
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Nasmyth Instruments
Envelopes:
L=8m,D=5m
30 tons (each)

Elevation
Axis

Cassegrain Instruments Envelopes:
L=4m, D =2.6m,10 tons (each)



Design Overview
* Concept CAD MOdel‘ 12m secondary with

% O carbon fiber structure
v 2 Nasmyth Instruments

50m active primary
mirror

Rotating Flat 8m
tertiary

Azimuth structure
with Nasmyth
instruments

Steel back up
structure with
ventilation

Elevation Wheel with
instrument room

12 azimuthal bogies
on 2 nested tracks

Azimuthal cable wrap

4 Cassegrain Instruments
Elevators (co-rotating in elevation)
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AtLAST receiver optics

- Focal plane has large size (D=4.7m) and significant curvature but camera
size is only a modest (~x2 diameter) scale up from that planned for CMB-54

- Pato Gallardo (formerly here, now at U Penn) optimized the AtLAST optics and
concepts for correction in the receivers.
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AtLAST Beam

Puddu et al. 2024
(arXiv:2406.16602,
SPIE proceedings)
carried out
extensive physical
optics calculations.
Simulating a 50-
meter up to 950 GHz
took some clever
tricks in
TICRA/GRASP to
make it
manageable.
Showing 900 GHz
case (worst)
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AtLAST Beam properties

900 ideal co-polar beam 900 ideal cross-polar beam
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AtLAST Beam
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AtLAST Beam: overall performance at 900 GHz
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So... what now?

* AtLAST2 (https://cordis.europa.eu/project/id/101188037) is happening!
* AtLAST website details the work packages; see https://atlast-telescope.org/atlast2.

* We actively encourage instrument builders to join and help inform the
instrumentation concepts that will achieve AtLAST’s next-generation science goals.
This is independent of region.

* We also encourage astronomers, astrophysicists, cosmologists, planetary
scientists, and solar physicists to get involved in further defining the science cases
(again, regardless of region).

* AtLAST has the potential to become the one mm/submm large aperture telescope
we get in this generation. The next generation(s) need such a telescope to map the
mm Universe, so let’s make it happen.



https://cordis.europa.eu/project/id/101188037
https://atlast-telescope.org/atlast2
https://atlast-telescope.org/atlast2
https://atlast-telescope.org/atlast2
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https://atlast-telescope.org/atlast2

AtLAST2 work package overview:

Coordination, community engagement, and impacts
Design Review and first light instrument definitions
Telescope Technology Demonstrations

Operations and user experience

Energy and sustainability

Upgraded tools for science users

N oo s b=

Testing with pathfinder telescopes




Work package 2.1: Design Reviews

* Conceptual Design Review (CoDR):
* CoDR assessed the AtLAST design from the phase | design study.

 The main areas of CoDR were the concepts for the optical, structural, control systems, and
materials.

* The aim was to reveal any key areas in the telescope concept design that need improvement over
the next 3 years. Fortunately, those identified were largely in sync with activities already undeway.

* Preliminary Design Review (PDR):
* Nearthe end of AtLAST2, to ensure we are ready for the final engineering design phase.

* Note that “PDR” has different meanings to different groups. We define it as the readiness review
before final engineering and implementation details are fully worked out.




Work package 2.2: first-light instrumentation

Spectroscopic receivers

. A1000-pixel heterodyne focal plane array(FPA)
providing high spectral resolution (dv <1 km/s)
to probe chemical complexity.

. A direct-detection, ultra-wide bandwidth
integral field unit (IFU) with R~300-1000 for
galaxy evolution and tomography.

. Single-beam, multi-frequency receiver for
mmVLBI and EHT campaigns.

. Perhaps a multi-object spectrograph (MOS),
depending on science demand.

Continuum cameras

“AtLAST Cam”: a multi-chroic continuum camera
comprising ~0.5 million detectors likely covering 8 bands
(see Di Mascolo et al. 2025)

Multi-chroic solar imager (see Kirkaune et al. 2025,
submitted to OJAp).

Below: a compilation of submm detector counts vs year using a variety
of technologies. Extrapolation suggests 0.5-megapixel cameras in the
mid-2030s, and gigapixels by 2060 (e.g. a fully-populated IFU).

Detectors
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104 |

103 J

102 |

101 J

100 J

Evolution of detector counts (updated 2025)
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Work package 3: maturing the metrology system and

telescope design

Alternative A

f==0
=0

M1 Shape Control via Etalons (laser
metrology)
M2 Position Control Etalons

Alternative B

i .
i *®
} 1
! ;
i |
' 1
y [
e / &
/ ® e
T Apex v
1 [ . ]
s LT

M1 Shape Control via Depth Sensors on
thermal stable substructure
M2 Position Control e.g. via Etalons

Alternative C

A v il
A : i
74 : !
I f S
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i 1
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L 4 i
] ’»7] 3 3
™ i ;
s ; gL

Overall Wavefront Control via
Microwave Interferometer in beam path

(demonstrated on Nobeyama 45-m; see
Tamura et al. 2022)
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WP3 + WP7/: kinetic energy recovery system

Three Phase Inverter

Braking
Resistor

DC N

AC DC

A simple modification to the standard drive system can
recover >80% of the kinetic energy normally dissipated
in braking!

By pre-charging the supercapacitors, our system also
offers power shavings.

We will test this system on APEX and design a system
for the 64-m SRT in this phase.
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See Kiselev et al. (2024SPIE13094E..0EK)
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Summary of Technical Specifications and Instrument concepts for AtLAST

Optical design

Ritchey-Chrétien

Summary of Instrumentation:

First light / first generation concepts (see AtLAST Science Cases):

Multi-band continuum receivers with >120k detectors

Wavelength (A) range 0.3-10 mm spanning 90-950 GHz.

Primary mirror (M1) diameter 50 m * Heterodyne receiver focal plane arrays with ~1000 feeds
and spectral resolution R~10¢ (< 1 km/s). Science cases

Secondary mirror (M2) diameter 12m will determine bands, though likely 70-116 GHz, 200-400

Field of view (FOV) 20(10) GHZ, 580-720 GHZ, and 850-950 GHz with 232 GHz
instantaneous bandwidth.

Number of instrument mount points 6 B — » Direct-detection spectrometers (R~300-1000) covering

200-400 GHz instantaneous bandwidth for extragalactic
tomography and cosmology through intensity mapping.

Night(Day)-time half wavefront error 20 (30) um — * Single beam, multi-band receivers for mmVLBI and EHT
Mechanical pointing accurac 2.5 arcsec — campaigns.
P g y i * Entire volume behind primary will house instrumentation, -
Astronomically-corrected pointing < 0.5 arcsec ‘ l electronics, and support equipment.
- * 6 instrument bays: the 4 smaller instruments will be Cassegrain-
Solar observations ves mounted and can be up to 10 tons and up to 2.6 meters in
Scan speed 3°/s diameter (red in figure below).

: S * The 2 larger instruments will be Nasmyth-mounted (blue, below)
Acceleration 1°/s = and up to 30 tons and up to 5 meters in diameter (i.e. 5 times larger
Elevation (EL) range 20° to 90° than the biggest receivers now fielded).

Azimuthal (AZ) range +270°
Mount type AZ-EL

Site location 22°58'52"S, 67°45'56"W

Site elevation =5000 m

AtLAST technical specifications (see Mroczkowski et al. 2025). The
50-meter primary mirror yields a resolution of 1.5” at 350 um and 10”
at 2 mm. Fast scanning will allow recovery of large angular scales,
ensuring high fidelity imaging (see van Marrewijk et al. 2024).
Mechanical pointing accuracy is before any astronomical pointing
model corrections.



https://ui.adsabs.harvard.edu/abs/2025A%26A...694A.142M/abstract
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Verification with Finite Element Modelling

STATIC LOAD CASES IN OVERALL MODEL Example surface plots

M1 Requirement < 200 um rms under gravity
Elevation wheel structure without active surface 2 22
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ANSYS
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STEP=9999
SP02
TOP

7.5 pym rms @EL=90°

I00NED NN

var.2.m0%0 Note: gravity is reproducible
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Verification with Finite Element Model

ACTIVE MAIN REFLECTOR SEGMENTS

416 panel segments simplified FE panel segment model

panel-tiles

6.1 pm rms @EL=90° (exemplary)

panel-tile adjuster
Metal Membrane Shell
for lateral only
support
of Baseplate

Sandwich Baseplate

Vertical only Support
of Baseplate

Subframe
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AtLAST sens_calc and sens_calc_spec

* https://github.com/atlast-telescope/sens_calc and https://github.com/atlast-
telescope/sens _calc_spec were developedin 2018 by Sean Bryan, based on his
Bolocalc code used for TolTEC
(https://ui.adsabs.harvard.edu/abs/2018SPIE10708E..0JB/abstract)

 The former is for continuum / multi-chroics, while the latter is more appropriate for
direct-detection spectrometers.

* Pros: easy to use if you want mapping speeds for direct-detection instruments
(KIDs, bolometers), including intensity mapping or tomography experiments

* Cons: assumes background-limited performance by default, not appropriate for
heterodyne receivers.



https://github.com/atlast-telescope/sens_calc
https://github.com/atlast-telescope/sens_calc
https://github.com/atlast-telescope/sens_calc
https://github.com/atlast-telescope/sens_calc
https://github.com/atlast-telescope/sens_calc_spec
https://github.com/atlast-telescope/sens_calc_spec
https://github.com/atlast-telescope/sens_calc_spec
https://ui.adsabs.harvard.edu/abs/2018SPIE10708E..0JB/abstract

AtLAST sens_calc example

* Takes xls file as input. This i aosave @) ) B & fo)alglelg
gg%av'v?gtag?geﬁzgigrrs’ Home Insert Draw > run_instrument_model_from_excel.py
counts, etc. —
| | A = | %
* Python COde ContaInS Clipboard Font Alignment Number
detector (e.g. 2 f-A)
spacings, aperture E10 4 3 .
efficiencies, ?nd a factor to - . C| = Output CSV with:
T L t : :
how far from baokground ™ me wee emaeis o Number of 150 mm wafers needed
umited we {Lbe. 1 & = % =&« numberofdetectors
* Output: table with mapping s 183 252 8 250 i
speeds 6 2% 35 8 250 * beam size
7 325 375 18 375
- = * detector loading,
10 786 905 6 870 . . .
11NN NaN 50 NaN * mapping speeds in several units (e.g.

deg”2/mly”~2/hour),
and several noise figures (NEP, NEFD)




AtLAST sensitivity calculator

* Now the standard for AtLAST, and being developed
further by WP6

* Pros: easyto use, well tested against e.g. the ALMA
sensitivity calculator

* Cons: primarily tuned for single beam, while our focal
plane is optimized for many, many beams.

e Currently only uses noise levels appropriate for
heterodyne receivers.

* The ability to take input bandwidths in km/s and
provide outputs in RJ brightness temperature (much
like the ALMA sensitivity calculator does) would be
nice.

_ Sensitivity Calculator

Parameter Value Allowed range
Elevation 55 deg 25 -85
Observing frequency 3o GHz 35 - 950
Bandwidth 40 GHz >0

H20 profile percentile og 5-95

Number of 2 o

polarizations

Sensitivity 1 mly v >0

Calculate integration time or sensitivity?

@Integration time O Sensitivity 0.9153 s

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant




AtLAST sensitivity
calculator example

Example: SZ science case calls for a 90 GHz continuum
sensitivity (in a 40 GHz bandwidth) of 6.6 microJy/beam
in a 4000 deg? survey.

Beam FWHM is 1.13 lambda/D = 15.5”, solid angle is
pi*(FWHM/2)?/In(2) = 270 sq. arcsec.

For a large area map made with many detectors, the
detector are never off source (so, we can ignore on/off
source efficiencies).

If we want to finish this survey in 5000 hours, we need
~32k detectors in that band (assuming heterodyne-like
noise where bolometers/KIDs excel).

Sensitivity Calculator

Parameter Value Allowed range
Elevation 60 deg 25 -85
Observing frequency g GHz 35 - 950
Bandwidth 40 GHz >0

H20 profile percentile gq 5-95

Number of 2 o

polarizations

Sensitivity 6.6 uwy v >0

Calculate integration time or sensitivity?

@Integration time O Sensitivity 50.1234 min

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant




marila

Does full 3d modelling of the atmosphere, including the near-field/far-field
effects, tested in Morris et al. 2022, 2025 against ACT data. See van
Marrewijk et al. 2024
(https://ui.adsabs.harvard.edu/abs/20240JAp....7E.118V/abstract) for
information on its application to observation planning.

Produces time ordered data (TODs) which can then be mapped using built-
in linear algebra mapmaker (van Marrewijk et al. 2024) or an external
mapmaker (e.g. minkasi).

Now applied to solar observations. Talk to Mats and see Kirkaune et al.
(submitted) soon.

Pros: realistic atmosphere, realistic format of time ordered data, easy to
use jupyter notebooks, and soon will take advantage of GPUs (Wuerzinger
et al. in prep)

Cons: more of a learning curve? Needs more realistic detector and photon
bunching noise (like t1empo has, next)

Scanning
strategy

Celestial
Background

bs

»
" 4

5

Simulated
Evolving

Atmosphere i ﬂ 2

Telescope &

Instrument Design



https://ui.adsabs.harvard.edu/abs/2024OJAp....7E.118V/abstract
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Gateau (see Arend Moerman’s poster)

GPU-accelerated (CUDA) simulator for spectroscopic ground-based submm observations of
arbitrary astronomical sources. Based on TIEMPO (Huijten et al. 2022).

Models cascaded radiative transfer of source signal through models of: A
- atmosphere (currently uses ARIS: Asaki et al. 2007) El
- telescope

- instrument

v

eS
Az —» Fquuef\C\

Takes into account coupling to Source

parasitic sources such as ground, cabin, etc.

Atmosphere

Telescope

Instrument

RAAAE Funded by
i***** the European Union Slides courtesy Arend Moerman (TU Delft)




Gateau (see Arend Moerman’s poster)

Cascaded signal is integrated over spectral response of each channel to calculate received power
time-ordered data (TOD) for that channel.

Noise calculation is based on physical principles:

- Photon noise (Shot noise & bunching)

- Quasiparticle generation-recombination noise

and added as Gaussian white noise to received power TOD.

Atmospheric fluctuation (~1/f noise) imposed through
radiative transfer cascade.

TIEMPO2 can be used to test observation strategies,
noise removal techniques, instrument designs, etc.

Noisy TOD produced with TIEMPO2
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Optical corrections

Gallardo et al. 2024

® With a huge (4.7 meter) focal surface, the idea is to
break it up into modular cameras. Each camera then
has corrective optics to recover a large field of view.

[ Lower frequencies (<300 GHz) are shown on right. Left
column is uncorrected; right column is corrected.
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