Constraining cosmic birefringence with CMB polarisation experiments

Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation (BICEP Collaboration, PRD 2025)

> Clara Vergès — Lawrence Berkeley National Laboratory + James Cornelison, Annie Polish & the BICEP collaboration mm Universe 2025 – June 26

What is cosmic birefringence and how can we constrain it?

What can we achieve with BICEP data?

What can we do to improve our expected performance?

Cosmic birefringence

Parity-violating field interacting with the electromagnetic field \rightarrow polarisation rotation angle α aka "cosmic birefringence"

Coupling effect integrates over the line of sight → the CMB is the best place to look for the signal!

Impact on the CMB

E modes Birefringence angle a B modes

*also produces TB but not used in this analysis because it contains no additional constraining power

EB signal* $C_{\ell}^{EB} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\alpha)$

Measurement challenges

Degenerate with instrumental polarisation → absolute calibration of individual detector polarisation angles

Low amplitude

- → high instrumental sensitivity
- → control of systematics

State of the art

ACT DR6: $0.2^{\circ} \pm 0.08^{\circ}$ (stat + optics) $\pm 0.03^{\circ}$ (pointing) Celestial sources + optics metrology and modelling

Planck/WMAP reanalysis: ~ 0.3° ± 0.1° Assumes model for foreground EB emission

What can we achieve with absolute calibration of BICEP maps?

BICEP3 2-year data set (2017 + 2018)

2400 detectors @ 95GHz 3.3 µK.arcmin over ~600 sq deg

Calibrating BICEP3

2022 RPS calibration campaign 1-month campaign Measured angles for 1800 detectors in BICEP3, 10 times

BICEP Collaboration/J. Cornelison

Rotating Polarised Source (RPS)

	Calibration	Sky signal
Statistical uncertainty	How repeatable is the angle measurement?	How well do we measure the EB signal from the sky?
Systematic uncertainty	Is the angle measurement biased?	Is the EB signal biased by another sky signal?

	Calibration	Sky signal
Statistical uncertainty	How repeatable is the angle measurement?	How well do we measure the EB signal from the sky?
Systematic uncertainty	Is the angle measurement biased?	Is the EB signal biased by another sky signal?

Calibration — statistical uncertainty

+ passed consistency checks on real data, blind to systematics uncertainty

$\sigma(\alpha) = 0.02^{\circ}$

This is the most precise direct measurement of polarisation angles for a CMB experiment

	Calibration	Sky signal
Statistical uncertainty	0.02°	How well do we measure the EB signal from the sky?
Systematic uncertainty	Is the angle measurement biased?	Is the EB signal biased by another sky signal?

Sky signal – statistical uncertainty

Breakdown of contributions

- noise only: $\sigma(\alpha) = 0.061^{\circ}$
- lensed- Λ CDM + noise + Gaussian dust: $\sigma(\alpha) = 0.078^{\circ}$

Competitive with other CMB experiments

• only lensed- Λ CDM: $\sigma(a) = 0.035^{\circ}$ (vs unlensed- Λ CDM $\sigma(a) = 0.004^{\circ}$)

	Calibration	Sky signal
Statistical uncertainty	0.02°	0.078°
Systematic uncertainty	Is the angle measurement biased?	Is the EB signal biased by another sky signal?

Sky signal – dust systematics?

Dust models (Gaussian, MKD, Vansyngel, MHD) → no bias and no significant impact on statistical uncertainty

Maximally correlated dust toy model $\mathscr{C}_{\ell}^{EB} = \sqrt{\mathscr{C}_{\ell}^{EE}} \times \mathscr{C}_{\ell}^{BB}$ → maximum bias of 0.027°

Dust B-modes x CMB E-modes \rightarrow maximum bias of 0.016°

Additional $\sigma(\alpha) = 0.02^{\circ}$ to account for dust contribution

Beam systematics

TP leakage from main beam mismatch: ~ 0.03° Due to T-to-B leakage correlating with TE in the CMB

Beam window function errors: 10% multiplicative error on α

	Calibration	Sky signal
Statistical uncertainty	0.02°	0.078°
Systematic uncertainty	Is the angle measurement biased?	≦0.04°

Calibration – systematic uncertainty

Category	Amplitude	$\sigma(\phi_{pair})$	
RPS performance			
Mechanical repeatability	0.006°	0.006°	
Tiltmeter calibration	0.014°	0.014°	
Rotation stage backlash	0.06°	0.06°	
Pointing model			
Focal plane residual rotation	0.012°	0.012°	
Measurement uncertainties			
Pair anticorrelations	1.3%	0.019°	
Alignment error (model)	$1^{\circ}Az/5^{\circ}El$	0.035°	
Alignment error (measured)		$\sim 0.3^{\circ}$	

horn, etc.)

Check out Annie Polish' poster on RPS performance & upgrades!

Diffraction on the rim of the wire grid generating spatially varying cross-polar response → Manifests as sensitivity to alignment → Mitigation strategy in progress (shielding, different

	Calibration	Sky signal
Statistical uncertainty	0.02°	0.078°
Systematic uncertainty	> 0.3°	≦0.04°

Looking ahead

Improve calibration procedure (Annie's poster)

- Mitigate cross-polar response
- Improve RPS performance
- Check RPS performance in real time

M. Echter

Looking ahead

Improve calibration procedure (Annie's poster)

- Mitigate cross-polar response
- Improve RPS performance
- Check RPS performance in real time

Increase sensitivity

- Go from 2-year to 7-year data se
- Multifrequency analysis
- Use external data sets to extend multipole range and/or delens

M. Echter

	Signal	σ_{noise}	$\sigma_{lensing}$	$\sigma_{ extbf{tot}}$
et	B3 2 years (this work)	0.061°	0.035°	0.078 °
	B3 7 years	0.035°	0.035°	0.055°
	B3 2 years $+$ delensing	0.061°	0.024°	0.073°
	B3 7 years $+$ delensing	0.035°	0.024°	0.048°

Conclusion

Demonstrated field performance of calibration source Detailed constraining power for BICEP3 2-year data set Competitive with other measurements (Planck/WMAP, ACT)

No cosmic birefringence constraint derived from real data so far but... → On-going improvement of RPS operations for future calibration campaigns → More data is already available to increase sensitivity Targeting $0.05^{\circ} < \sigma(\alpha) < 0.1^{\circ}$

All the details (and more!) in BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation, PhysRevD.111.063505

Most precise measurements of polarisation angles for a CMB experiment

Calibration bias

Sensitivity to alignment is due to previously unmitigated electromagnetic effects in the calibration source itself

