SPT-3G D1: CMB TT/TE/EE power spectra and cosmology from 2019 and 2020 observations of the Main field

Etienne Camphuis for the SPT-3G collaboration

uropean Research Counci stablished by the European Co

Wei Quan (Argonne)

Lennart Balkenhol (IAP)

Ali R. Khalife (IAP)

SPT-3G D1: CMB temperature and polarization power spectra and cosmology from 2019 and 2020 observations of the SPT-3G Main field

E. Camphuis \mathbb{O} ,¹ W. Quan,^{2,3,4} L. Balkenhol \mathbb{O} ,¹ A. R. Khalife \mathbb{O} ,¹ F. Ge,^{5,6,7} F. Guidi \mathbb{O} ,¹ N. Huang \mathbb{O} ,⁸ G. P. Lynch \mathbb{O} , 7 Y. Omori, 9, 4 C. Trendafilova, 10 A. J. Anderson \mathbb{O} , 11, 4, 9 B. Ansarinejad, 12 M. Archipley \mathbb{O} , 9, 4 P. S. Barry ^(D), ³⁵ K. Benabed, ¹ A. N. Bender ^(D), ^{2,4,9} B. A. Benson ^(D), ^{11,4,9} F. Bianchini ^(D), ^{5,6,13} L. E. Bleem ^(D), ^{2,4,9} F. R. Bouchet \mathbb{O} ,¹ L. Bryant,¹⁴ M. G. Campitiello,² J. E. Carlstrom \mathbb{O} ,^{4, 14, 3, 2, 9} C. L. Chang,^{2, 4, 9} P. Chaubal,¹² P. M. Chichura ,^{3,4} A. Chokshi,¹⁵ T.-L. Chou ,^{9,4,16} A. Coerver,⁸ T. M. Crawford ,^{9,4} C. Daley ,^{17,18} T. de Haan,¹⁹ K. R. Dibert,^{9,4} M. A. Dobbs,^{20,21} M. Doohan,¹² A. Doussot,¹ D. Dutcher \mathbb{D} ,²² W. Everett,²³ C. Feng,²⁴ K. R. Ferguson \bigcirc ,^{25, 26} K. Fichman,^{3, 4} A. Foster \bigcirc ,²² S. Galli,¹ A. E. Gambrel,⁴ R. W. Gardner,¹⁴ N. Goeckner-Wald,^{6,5} R. Gualtieri,^{2,27} S. Guns,⁸ N. W. Halverson,^{28,29} E. Hivon,¹ G. P. Holder,²⁴ W. L. Holzapfel,⁸ J. C. Hood,⁴ A. Hryciuk,^{3,4} F. Kéruzoré,² L. Knox,⁷ M. Korman,³⁰ K. Kornoelje,^{9,4,2} C.-L. Kuo,^{5, 6, 13} K. Levy,¹² A. E. Lowitz⁰,⁴ C. Lu,²⁴ A. Maniyar,^{5, 6, 13} E. S. Martsen,^{9, 4} F. Menanteau,^{18, 10} M. Millea \mathbb{D} ,⁸ J. Montgomery,²⁰ Y. Nakato,⁶ T. Natoli,⁴ G. I. Noble \mathbb{D} ,^{31,32} A. Ouellette,²⁴ Z. Pan \mathbb{D} ,^{2,4,3} P. Paschos,¹⁴ K. A. Phadke $(0, 18, 10, 33, M. W. Pollak,^{15} K. Prabhu,^7 S. Raghunathan <math>(0, 10, M. Rahimi,^{12})$ A. Rahlin ,^{9,4} C. L. Reichardt ,¹² M. Rouble,²⁰ J. E. Ruhl,³⁰ E. Schiappucci,¹² A. Simpson,^{9,4} J. A. Sobrin ,^{11,4} A. A. Stark,³⁴ J. Stephen,¹⁴ C. Tandoi,¹⁸ B. Thorne,⁷ C. Umilta \bigcirc ,²⁴ J. D. Vieira \bigcirc ,^{18, 24, 10} A. Vitrier \bigcirc ,¹ Y. Wan,^{18,10} N. Whitehorn $O,^{26}$ W. L. K. Wu $O,^{5,13}$ M. R. Young,^{11,4} and J. A. Zebrowski^{4,9,11}

Paper on arXiv today!

(SPT-3G Collaboration)

2

The SPT-3G collaboration

European Research Council Established by the European Commission

(1) From maps to band powers, to cosmology. (2) TT/TE/EE cosmological fit. (4) Combination with DESI DR2 BAO data.

Outline

- (3) Combination with SPT-3G lensing and CMB data sets.

SPT-3G D1 pipeline : highlights

2000 QuickMock simulations to model the transfer function

SPT-3G D1 pipeline : highlights

2000 QuickMock simulations to model the transfer function

SPT-3G D1 pipeline : highlights

Semianalytical covariance matrices

« Lite » likelihood

https://github.com/dpiras/ cosmopower-jax

*

https://github.com/ svenguenther/OLE/

		a. 68. e.	~
•	•	•	

Etienne Camphuis | mm-Universe | June 26th, 2025

7

Etienne Camphuis | mm-Universe | June 26th, 2025

Data set extends from 400 to 3000 in TT

From 400 to **4000 in TE**/ EE

Etienne Camphuis | mm-Universe | June 26th, 2025

From 400 to 4000 in TE/ EE

Precise measurement $[M^{T}]_{P_{Q}}$ of the small scales in scales in polarization

Etienne Camphuis | mm-Universe | June 26th, 2025

Signal-to-noise ratio

Experiment	Sky fraction [%]	Coadded noise [uK-arcmin]
Planck	100	35
ACT DR6	45	10
SPT-3G D1	4	3.3

SPT-3G D1 provides the tightest band powers:

In TE, at $\ell \in [2200, 4000]$,

In EE, at $\ell \in [1800, 4000]$.

Etienne Camphuis | mm-Universe | June 26th, 2025

Signal-to-noise ratio

Experiment	Sky fraction [%]	Coadded noise [uK-arcmin]
Planck	100	35
ACT DR6	45	10
SPT-3G D1	4	3.3

SPT-3G D1 provides the tightest band powers:

In TE, at $\ell \in [2200, 4000]$,

In EE, at $\ell \in [1800, 4000]$.

Etienne Camphuis | mm-Universe | June 26th, 2025

- We first validate band powers, using blind null tests.
- We then validate the likelihood, with simulations and parameter null tests.

- We first validate band powers, using blind null tests.
- We then validate the likelihood, with simulations and parameter null tests.
- We unblinded when we passed all the tests.
- After unblinding, we added two components to our data model:
 - (1) Quadrupolar beam leakage,
 - (2) Polarized beams.

- We first validate band powers, using blind null tests.
- We then validate the likelihood, with simulations and parameter null tests.
- We unblinded when we passed all the tests.
- After unblinding, we added two components to our data model:
 - (1) Quadrupolar beam leakage,
 - (2) Polarized beams.

- We first validate band powers, using blind null tests.
- We then validate the likelihood, with simulations and parameter null tests.
- We unblinded when we passed all the tests.
- After unblinding, we added two components to our data model:
 - (1) Quadrupolar beam leakage,
 - (2) Polarized beams.

Etienne Camphuis | mm-Universe | June 26th, 2025

- We first validate band powers, using blind null tests.
- We then validate the likelihood, with simulations and parameter null tests.
- We unblinded when we passed all the tests.
- After unblinding, we added two components to our data model:
 - (1) Quadrupolar beam leakage,
 - (2) Polarized beams.

Etienne Camphuis | mm-Universe | June 26th, 2025

ACDM fit

ACDM is a good fit to the SPT-3G D1 data

$\chi^2(ndof):$ 1359(1362) PTE = 52%

 $+95\,\mathrm{GHz}$ $+95 \times 150\,\mathrm{GHz}$ $+95 \times 220\,\mathrm{GHz}$ $+150\,\mathrm{GHz}$ $+150 \times 220\,\mathrm{GHz}$ $+220\,\mathrm{GHz}$

Etienne Camphuis | mm-Universe | June 26th, 2025

ACDM fit

- ACDM provides a good fit to TT, TE and EE individually:
 - TT: 267(291) and PTE = 84%,
 - TE : 631(633) and PTE = 51%,
 - EE: 429(421) and PTE = 38%.
- TT, TE and EE ACDM parameters agree.
- Combining with lensing yields tighter constraints.

Etienne Camphuis | mm-Universe | June 26th, 2025

)ata sets

- **SPT-3G D1**:
 - SPT-3G Main field T&E* data.
 - $\Phi\Phi$ band-powers from Ge et al, [SPT-3G], 2024.
- **Planck**: Planck 2018 (PR3) [high- ℓ T&E + low- ℓ TT] (Planck Collaboration et al., 2018) + PR4 $\Phi\Phi$ band-powers (Carron et al, 2022).
- ACT DR6: ACT DR6 T&E (Louis et al [ACT], 2025) + ACT DR6 $\Phi\Phi$ band-powers (Madhavacheril et al [ACT], 2023; Qu et al [ACT], 2023).
- SPT+ACT: SPT-3G D1 + ACT DR6.
- CMB-SPA: SPT-3G D1 + P-ACT T&E (Louis et al [ACT], 2025) + P-ACT $\Phi\Phi$ (Carron, 2022).
- $\tau_{reio} \sim \mathcal{N}(0.051, 0.006)$: used for all the data sets above (Akrami et al [Planck], 2020).

With just 4% of the sky, SPT-3G's constraints on H_0 and σ_8 are within 25% of Planck's.

- SPT-3G D1 and Planck agree at 0.4σ .
- SPT-3G D1 agrees with ACT DR6 at 1.1 *σ*.
- Indication of the robustness of CMB science.
- This is a formidable test for ΛCDM .

Etienne Camphuis | mm-Universe | June 26th, 2025

For the first time, the combined constraining power of SPT+ACT reaches Planck's precision.

> Planck $H_0 = 67.41 \pm 0.49 \,\text{km/s/Mpc}$ SPT-3G D1 $H_0 = 66.66 \pm 0.60 \,\text{km/s/Mpc}$ **SPT+ACT** $H_0 = 66.59 \pm 0.46 \,\text{km/s/Mpc}$

Etienne Camphuis | mm-Universe | June 26th, 2025

CMB-SPA yields the most precise determination of ACDM parameters from CMB alone.

Planck $H_0 = 67.41 \pm 0.49 \,\text{km/s/Mpc}$ SPT-3G D1 $H_0 = 66.66 \pm 0.60 \,\text{km/s/Mpc}$ **SPT+ACT** $H_0 = 66.59 \pm 0.46 \,\text{km/s/Mpc}$ **CMB-SPA** $H_0 = 67.24 \pm 0.35 \text{ km/s/Mpc}$

Etienne Camphuis | mm-Universe | June 26th, 2025

CMB-SPA yields the most precise determination of ACDM parameters from CMB alone.

We do not find any statistically significant deviation from ACDM from CMB data alone.

Etienne Camphuis | mm-Universe | June 26th, 2025

σ_8 -	$\Omega_{\rm m}$
--------------	------------------

-	SPT-3G D1 alone, with only 4% of the sky,	0.95
	constrain σ_8 almost as well as Planck.	0.90
-	A variety of probes, spanning a wide range of $\overset{\infty}{6}$	0.85
	epochs, are consistent	
	with each other	0.80
	(including the latest	
	KIDS-legacy cosmic	0.75
	collaboration. 2025).	

$\sigma_8 = 0.8137 \pm 0.0038, \\ \Omega_m = 0.3166 \pm 0.0051$

for CMB-SPA T&E& ϕ

		CMB-SPA $\phi\phi$ DES 3×2pt PT cluster [Bocquet e CMB-SPA T&E PT-3G D1
0.2	0.3	0.4
	$\Omega_{ m m}$	

Evaluating the consistency of CMB and DESIDR2 data in ACDM

Growing discrepancy between CMB and BAO data.

SPT-3G D1 vs. DESI: 2.5σ

Evaluating the consistency of **CMB and BAO data in ACDM**

Etienne Camphuis | mm-Universe | June 26th, 2025

Growing discrepancy between CMB and BAO data.

2.5σ
3.1σ
3.7σ
2.0σ
2.8σ

Given borderline differences, joint analyses to be performed with caution

Differences between CMB and DESI can be accommodated by $2-3\sigma$ deviations from ACDM.

Model Class	Preference over ACDM
Rescaling of lensing in CMB	3.1σ
Light relics	<1.50
Modified recombination	2.0σ
Spatial curvature	2.5σ
Spatial curvature and electron mass	2.1σ
Neutrino mass	2.8σ
Dynamical dark energy	3.2σ

Conclusions

- SPT-3G D1 is only the beginning ! More data, QE T+P lensing (see Yuuki's talk)

- Please checkout paper, results, and likelihood at https://pole.uchicago.edu/public/data/camphuis25
- Likelihood is public, please use it !

🕮 README

SOUTH POLE TELESCOPE

Official SPT data for candl

Official SPT data for the differentiable CMB likelihood framework candl.

Installation

To install the SPT candl data library, simply navigate to where you would like to store the data and then run:

```
git clone https://github.com/SouthPoleTelescope/spt_candl_data.git
cd spt_candl_data
pip install .
```

This will download the relevant data files. The installation gives you access to handy short cuts that make it easier to initialise the likelihoods.

Back-up

Pipeline

Quadrupolar beam leakage

$$B^{\mathrm{T}\to\mathrm{Q};\mu}(x,y) = B_{\sigma_{\mu}}(x,y) \sum_{m+n} a_{m,n}^{\mathrm{T}\to\mathrm{Q};\mu} H_{m,n}\left(\frac{x}{\sigma_{\mu}},\frac{x}{\sigma_{\mu}}\right)$$
$$B^{\mathrm{T}\to\mathrm{U};\mu}(x,y) = B_{\sigma_{\mu}}(x,y) \sum_{m+n} a_{m,n}^{\mathrm{T}\to\mathrm{U};\mu} H_{m,n}\left(\frac{x}{\sigma_{\mu}},\frac{x}{\sigma_{\mu}}\right)$$

$$\epsilon_{2}^{\mu} = \left(a_{2,0}^{T \to Q;\mu} - a_{0,2}^{T \to Q;\mu} + a_{1,1}^{T \to U;\mu}\right)/2.$$

$$\begin{split} C_{\ell}^{\mathrm{TE};\mu\nu;\mathrm{leak}} = & \epsilon_{2}^{\nu} \sigma_{\nu}^{2} \ell^{2} C_{\ell}^{\mathrm{TT};\mu\nu}, \\ C_{\ell}^{\mathrm{EE};\mu\nu;\mathrm{leak}} = & \epsilon_{2}^{\mu} \sigma_{\mu}^{2} \ell^{2} C_{\ell}^{\mathrm{TE};\mu\nu} + \epsilon_{2}^{\nu} \sigma_{\nu}^{2} \ell^{2} C_{\ell}^{\mathrm{ET};\mu} \\ & + \epsilon_{2}^{\mu} \epsilon_{2}^{\nu} \sigma_{\mu}^{2} \sigma_{\nu}^{2} \ell^{4} C_{\ell}^{\mathrm{TT};\mu\nu}, \end{split}$$

Etienne Camphuis | mm-Universe | June 26th, 2025

Beams

Temperature beams

Etienne Camphuis | mm-Universe | June 26th, 2025

Beams

Temperature beams

Etienne Camphuis | mm-Universe | June 26th, 2025

Beams

Polarized beams

- Sidelobe polarization efficiency can be lower than the main beam polarization efficiency

Etienne Camphuis | mm-Universe | June 26th, 2025

be lower than the main beam polarization efficiency

$$-- B_{\ell}^{\mathrm{T}}$$
 $--- B_{\ell}^{\mathrm{P}}$ $--- B_{\ell}^{\mathrm{main}}$

Real space beams

- Sidelobe polarization efficiency can be lower than the main beam polarization efficiency

In this plot it appears we are correcting the small scales.

The polarized beams model first targets the large scales.

Credit: T. Louis

Unknown systematic effect, which led to additional ell cuts in ACT DR6

EE null tests (SPT-3G D1)

EE null tests (ACT DR6, Louis et al. 2025)

Etienne Camphuis | mm-Universe | June 26th, 2025

Etienne Camphuis | mm-Universe | June 26th, 2025

Transfer function

Mixing matrix

Etienne Camphuis | mm-Universe | June 26th, 2025

Foregrounds

Etienne Camphuis | mm-Universe | June 26th, 2025

Etienne Camphuis | mm-Universe | June 26th, 2025

Likelihood

https://github.com/Lbalkenhol/candl

 $-\ln \mathcal{L}(\hat{C}|C^{\text{model}}(\theta)) \propto \\ \frac{1}{2} \left[\hat{C}_{b} - C_{b}^{\text{model}}(\theta) \right] \Sigma_{bb'}^{-1} \left[\hat{C}_{b'} - C_{b'}^{\text{model}}(\theta) \right]$

More details in the paper !

Camphuis et al, 2023

Etienne Camphuis | mm-Universe | June 26th, 2025

TE difference tests

Etienne Camphuis | mm-Universe | June 26th, 2025

Conditional tests

Etienne Camphuis | mm-Universe | June 26th, 2025

Cosmology

$Consistency of \Lambda CDM across scales$

 $L_1, L_2 = 1000,2000$

 $\Omega_{\rm c} h^2$

Data set consistency

	Ŀ	I_0		_				Ω_{1}	$_{ m b}h^2$	
	49	58	58					23	39	28
50		31	13		S	50			13	4
60	31		5		\mathcal{U}	33		24		7
59	10	0				33)	5	17	
		(⁽)	E.E.		-		*	L'IL	(The second sec	E.E.
	Spe	ctrui	$\mathbf{m} \mathbf{A}$.11	Г	\mathbf{T}]	ΓE	\mathbf{EE}	-
	ŀ	A 11	-	-	0.	4σ	1.	2σ	0.6σ	
	\mathbf{TT}		0.	67		-	1.	0σ	0.3σ	
	\mathbf{TE}		0.	22	0.	31		-	1.0σ	
	I	\mathbf{EE}	0.	57	0.	78	0	.33	-	

50

ACDM

Parameter	Planck	SPT-3G D1	ACT DR6	$\mathbf{SPT} + \mathbf{ACT}$	SPT + <i>Planck</i>	CMB-SPA
Sampled						
$10^4 heta_{ m s}^{\star}$	104.184 ± 0.029	104.171 ± 0.060	104.157 ± 0.030	104.158 ± 0.025	104.176 ± 0.026	104.162 ± 0.0
$100\Omega_{ m b}h^2$	2.238 ± 0.014	2.221 ± 0.020	2.257 ± 0.016	2.247 ± 0.013	2.230 ± 0.011	2.2381 ± 0.00
$100\Omega_{ m c}h^2$	11.98 ± 0.11	12.14 ± 0.16	12.26 ± 0.17	12.22 ± 0.12	12.050 ± 0.089	12.009 ± 0.03
$n_{ m s}$	0.9657 ± 0.0040	0.951 ± 0.011	0.9682 ± 0.0069	0.9671 ± 0.0058	0.9636 ± 0.0035	0.9684 ± 0.00
$\log(10^{10}A_{ m s})$	3.042 ± 0.011	3.054 ± 0.015	3.038 ± 0.012	3.042 ± 0.011	3.046 ± 0.010	3.0479 ± 0.00
$ au_{ m reio}$	0.0535 ± 0.0056	0.0506 ± 0.0059	0.0513 ± 0.0060	0.0514 ± 0.0059	0.0538 ± 0.0054	0.0559 ± 0.00
Derived						
$H_0[{ m km/s/Mpc}]$	67.41 ± 0.49	66.66 ± 0.60	66.51 ± 0.64	66.59 ± 0.46	67.07 ± 0.38	67.24 ± 0.35
$\operatorname{Age}\left[\operatorname{Gyr}\right]$	13.797 ± 0.022	13.826 ± 0.027	13.797 ± 0.021	13.805 ± 0.016	13.812 ± 0.017	13.805 ± 0.01
$10^9A_{ m s}e^{-2 au_{ m reio}}$	1.883 ± 0.010	1.915 ± 0.021	1.884 ± 0.013	1.889 ± 0.011	1.8890 ± 0.0092	1.8843 ± 0.00
Ω_Λ	0.6854 ± 0.0067	0.6753 ± 0.0091	0.670 ± 0.010	0.6722 ± 0.0072	0.6810 ± 0.0054	0.6833 ± 0.00
$\Omega_{ m m}$	0.3145 ± 0.0067	0.3246 ± 0.0091	0.330 ± 0.010	0.3277 ± 0.0072	0.3189 ± 0.0054	0.3166 ± 0.00
$r_{ m d}[{ m Mpc}]$	147.13 ± 0.25	146.92 ± 0.47	146.20 ± 0.46	146.43 ± 0.34	147.06 ± 0.23	147.07 ± 0.22
σ_8	0.8099 ± 0.0051	0.8158 ± 0.0058	0.8171 ± 0.0055	0.8169 ± 0.0042	0.8132 ± 0.0042	0.8137 ± 0.00

ACDM

CMB-SPA yields the most precise determination of ACDM parameters from a single probe. All three experiments agree with each other within 1.1σ .

Etienne Camphuis | mm-Universe | June 26th, 2025

H_0 tension with SHOES

- Hubble tension at **6.2** σ from SPT-3G alone.
- SPT-3G D1 ACT DR6
- SPT+ACT and SPT+ACT CMB-SPA are at **6.8** σ and **6.4** σ tension, respectively. **CMB-SPA**

Planck

Breuval et al., 2024 $H_0 = 73.17 \pm 0.86 \,\text{km/s/Mpc}$

H_0 tension - Hubble tension at SPT-3G D1 **6.2** σ from SPT-3G alone. ACT DR6 - SPT+ACT and SPT+ACT CMB-SPA are at **6.8**σ and **6.4**σ Planck tension, respectively. **CMB-SPA**

 $H_0 = 66.66 \pm 0.60 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ for SPT-3G D1, $H_0 = 66.59 \pm 0.46 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ for SPT+ACT, $H_0 = 67.24 \pm 0.35 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ for CMB-SPA.

σ_8 - Σ_m

 $\sigma_8 = 0.8158 \pm 0.0058,$ $\Omega_{\rm m}=0.3246\pm0.0091$ $\sigma_8 = 0.8169 \pm 0.0042,$ $\Omega_{\rm m} = 0.3277 \pm 0.0072$ $\sigma_8 = 0.8137 \pm 0.0038,$ $\Omega_m=0.3166\pm0.0051$

0.95for SPT-3G D1, for SPT+ACT, 0.90for CMB-SPA. ∞ 6 0.85 ∎

0.80

0.75

$\sigma_8 = 0.8137 \pm 0.0038$, $\Omega_{\rm m} = 0.3166 \pm 0.0051$

for CMB-SPA T&E& ϕ

		CMB-SPA $\phi\phi$ DES 3×2pt PT cluster [Bocquet e CMB-SPA T&E PT-3G D1
0.2	0.3	0.4
	$\Omega_{ m m}$	

Consistency of CMB and **BAO in ACDM**

	$100\Omega_{ m m}$	$hr_{ m d}[{ m Mpc}]$	Distance to DESI
CMB-SPA	31.66 ± 0.50	98.89 ± 0.63	2.8σ
SPT+ACT	32.77 ± 0.72	97.51 ± 0.87	3.7σ
SPT+Planck	31.89 ± 0.54	98.63 ± 0.67	3.0σ
ACT DR6	33.0 ± 1.0	97.2 ± 1.2	3.1σ
SPT-3G D1	32.47 ± 0.91	97.9 ± 1.1	2.5σ
Planck	31.45 ± 0.67	99.18 ± 0.84	2.0σ
DESI	29.76 ± 0.87	101.52 ± 0.73	

Etienne Camphuis | mm-Universe | June 26th, 2025

Consistency of CMB and BAO in ACDM

	$100\Omega_{ m m}$	$hr_{ m d}[{ m Mpc}]$	Distance to DESI
CMB-SPA	31.66 ± 0.50	98.89 ± 0.63	2.8σ
SPT+ACT	32.77 ± 0.72	97.51 ± 0.87	3.7σ
SPT+Planck	31.89 ± 0.54	98.63 ± 0.67	3.0σ
ACT DR6	33.0 ± 1.0	97.2 ± 1.2	3.1σ
SPT-3G D1	32.47 ± 0.91	97.9 ± 1.1	2.5σ
Planck	31.45 ± 0.67	99.18 ± 0.84	2.0σ
DESI	29.76 ± 0.87	101.52 ± 0.73	

Donomoton	SPT-3G D1	CMB-SPA
Farameter	+ DESI	+ DESI
Sampled		
$10^4 heta_{ m s}^{\star}$	104.227 ± 0.056	104.180 ± 0.02
$100\Omega_{ m b}h^2$	2.218 ± 0.022	2.2452 ± 0.008
$100\Omega_{ m c}h^2$	11.749 ± 0.079	11.813 ± 0.058
$n_{ m s}$	0.949 ± 0.012	0.9728 ± 0.002
$\log(10^{10}A_{\rm s})$	3.066 ± 0.014	3.0574 ± 0.009
$ au_{ m reio}$	0.0559 ± 0.0056	0.0625 ± 0.005
Derived		
$H_0 [{ m kms^{-1}Mpc^{-1}}]$	68.21 ± 0.31	68.06 ± 0.24
Age [Gyr]	13.795 ± 0.025	13.783 ± 0.012
$10^9 A_{ m s} e^{-2 au_{ m reio}}$	1.920 ± 0.021	1.8773 ± 0.005
Ω_{Λ}	0.6983 ± 0.0039	0.6950 ± 0.003
$\Omega_{\mathbf{m}}$	0.3017 ± 0.0039	0.3049 ± 0.003
$r_{ m d} [{ m Mpc}]$	147.99 ± 0.33	147.51 ± 0.17
σ_8	0.8079 ± 0.0059	0.8120 ± 0.003

Lensing amplitude	6
$ \begin{array}{c} A_{2\text{pt}} = 0.986^{+0.078}_{-0.097} \\ A = -0.074^{+0.081} \end{array} \right\} \text{for SPT-3G D1}, $	SPT-
$ \begin{array}{l} A_{\text{recon}} = 0.974_{-0.11} \\ A_{\text{2pt}} = 1.026 \pm 0.048 \\ A_{\text{recon}} = 0.990 \pm 0.050 \end{array} \right\} \text{for SPT+ACT}, $	SPT-3 ACT
$A_{2pt} = 1.083 \pm 0.037$ $A_{recon} = 1.048 \pm 0.031$ for CMB-SPA.	F

 $A_{\text{lens}} = 1.084 \pm 0.035 \text{ for SPT-3G D1} + \text{DESI},$ $A_{\text{lens}} = 1.092 \pm 0.026 \text{ for SPT} + \text{ACT} + \text{DESI},$ $A_{\text{lens}} = 1.084 \pm 0.024 \text{ for CMB-SPA} + \text{DESI}.$

New light particles

 $N_{\text{eff}} = 3.17^{+0.29}_{-0.33}$ for SPT-3G D1,

 $N_{\rm eff} = 2.77 \pm 0.17$ for SPT+ACT,

 $N_{\rm eff} = 2.81 \pm 0.12$ for CMB-SPA.

 $N_{\rm eff} = 2.97^{+0.40}_{-0.64}$ for SPT-3G D1, $Y_{\rm P} = 0.269^{+0.040}_{-0.030}$ $N_{\rm eff} = 2.85^{+0.32}_{-0.40}$ for SPT+ACT, $Y_{\rm P} = 0.236^{+0.025}_{-0.021}$ $N_{\rm eff} = 2.99^{+0.22}_{-0.26}$ for CMB-SPA. $Y_{\rm P} = 0.231 \pm 0.014$

Etienne Camphuis | mm-Universe | June 26th, 2025

Modified Recombination [Lynch et al., 2024]

Etienne Camphuis | mm-Universe | June 26th, 2025

Constraints from CMB and BAO data on extended cosmological models

Constraints from CMB and BAO data on extended cosmological models

Constraints from CMB and BAO data on extended cosmological models

	CMB-SPA	DESI	CMB-SPA+DESI		
Model	$\chi^2_{ m CMB}$	$\chi^2_{ m DESI}$	$\chi^2_{ m CMB}$	$\chi^2_{ m DESI}$	$\chi^2_{ m CMB+DESI}$
ΛCDM	1550.9	10.3	1556.0	14.8	1570.7
$A_{ m lens}$	$1548.9~(2.0, 1.4\sigma)$	_	1550.4	10.9	$1561.2~(9.5, 3.1\sigma$
ModRec	$(8.9, 1.1\sigma)$	_	(12.0)	(2.2)	$(14.2, 2.0\sigma)$
$\Omega_{\mathbf{k}}$	$1549.5~(1.4, 1.2\sigma)$	$10.0~(0.3, 0.6\sigma)$	1553.5	10.9	$1564.4~(6.3, 2.5\sigma$
$\Omega_{ m k}+m_{ m e}$	_	_	1553.6	10.3	$1563.9~(6.8, 2.1\sigma$
$\Sigma m_{ u}$	$1551.0~(-0.1, 0.0\sigma)$	_	1551.2	11.8	$1562.9~(7.8, 2.8\sigma$
$w_0 w_a$	_	$5.6~(4.7, 1.7\sigma)$	1550.0	7.3	$1557.3 \ (13.5, 3.2 c)$

(2_K)

 $100\Omega_{\rm k} = 0.40 \pm 0.18$ for SPT-3G D1 + DESI, $100\Omega_{\rm k} = 0.51 \pm 0.17$ for SPT+ACT + DESI, $100\Omega_{\rm k} = 0.26 \pm 0.11$ for CMB-SPA + DESI.

 $100\Omega_{\rm k} = 0.2^{+1.5}_{-1.2}$ for SPT-3G D1, $100\Omega_{\rm k} = -0.06^{+0.81}_{-0.70}$ for SPT+ACT, $100\Omega_{\rm k} = -0.88 \pm 0.48$ for CMB-SPA.

SPT-3G D1 +DESI	SPT+ACT + DESI	CMI +DE
70.1 ± 1.2	70.5 ± 1.2	70.6
29.74 ± 0.79	29.83 ± 0.78	29.20
102.5 ± 0.8	101.4 ± 0.7	101.9
1.5 ± 1.1	1.6 ± 1.1	1.97
0.04 ± 0.31	0.10 ± 0.30	-0.2
2.3	2.0	1.9
	SPT-3G D1 +DESI 70.1 ± 1.2 29.74 ± 0.79 102.5 ± 0.8 1.5 ± 1.1 0.04 ± 0.31 2.3	SPT-3G D1SPT+ACT $+$ DESI $+$ DESI 70.1 ± 1.2 70.5 ± 1.2 29.74 ± 0.79 29.83 ± 0.78 102.5 ± 0.8 101.4 ± 0.7 1.5 ± 1.1 1.6 ± 1.1 0.04 ± 0.31 0.10 ± 0.30 2.3 2.0

Etienne Camphuis | mm-Universe | June 26th, 2025

 $\mathcal{M}_{\mathcal{U}}$

CMB only

$\Sigma m_{ u} < 0.77 \,\mathrm{eV}$ for SPT-3G D1, $\Sigma m_{ u} < 0.58 \,\mathrm{eV}$ for SPT+ACT, $\Sigma m_{ u} < 0.17 \,\mathrm{eV}$ for CMB-SPA.

CMB + DESI

 $\Sigma m_{\nu} < 0.081 \,\mathrm{eV}$ for SPT-3G D1 + DESI, $\Sigma m_{\nu} < 0.048 \,\mathrm{eV}$ for CMB-SPA + DESI.

 $W_0 - W_a$

CMB-SPA + DESI (2.9 sigma)

$w_0 = -0.41 \pm 0.20,$ $w_a = -1.78 \pm 0.55.$

$w_{\perp} = 1.91 \pm 0.57$ for CMB-**SPA+DESI**

