SPT-3G: Cosmology from CMB Lensing and Delensed EE Power Spectra with 2019 and 2020 Polarization Data (2411.06000)

Fei Ge (+ the SPT-3G Collaboration)

feig@stanford.edu KIPAC, Stanford University

(mm-Universe, 2025 Chicago, IL)

• Many thanks to the other key contributors to this project.

Marius Millea UC Davis

Lloyd Knox UC Davis

Etienne Camphuis IAP

Cail Daley IRFU/UIUC

Nicholas Huang UC Berkeley

Yuuki Omori KICP

Wei Quan Argonne

Polarization only*

Highlights:

- We perform a joint estimate of CMB lensing bandpowers and unlensed EE bandpowers using MUSE[†].
- With signals only from CMB polarization, we are able to achieve constraints on H0 and S8 comparable to Planck results.
- Assuming LCDM, SPT results are consistent with Planck and ACT.
- Our analysis observes weak preference of ³ an excess lensing power relative to LCDM prediction.
- We also detect >3σ effects from non-linear evolution in CMB lensing.

^T Likelihoods can be found at <u>https://pole.uchicago.edu/public/data/ge25/index.html</u>

*ACT lensing is from polarization-only signal and has no calibration uncertainty..

3

The South Pole Telescope (SPT)

3 bands: 95, 150, 220 GHz Resolution: 1.6, 1.2, 1.0 armin CMB-S4 depths on ~3.5% of the full sky

 SPT-SZ (2007)
 SPT-pol (2012)
 SPT-3G (2017)

 ~1,000 detectors
 ~1,500 detectors
 ~16,000 detectors

Photo: Aman Chokshi, SPT winterover

- A Bayesian method jointly estimates
 - the CMB lensing potential bandpowers
 - unlensed EE bandpowers
 - systematic parameters.
- A map-level inference effectively uses all N-point statistics

 $\{A_b^{EE}, A_b^{\phi\phi}, \theta_{sys}\}$

 $\mathcal{P}(\theta|d)$

Observed CMB maps

- A Bayesian method jointly estimates
 - the CMB lensing potential bandpowers
 - unlensed EE bandpowers
 - systematic parameters.
- A map-level inference effectively uses all N-point statistics

 $\{A_{h}^{EE}, A_{h}^{\phi\phi}, \theta_{sus}\}$ Unlensed CMB polarization maps $\mathcal{P}(\theta|d) = \int df \ d\phi \ \mathcal{P}(f,\phi,\theta|d)$ Lensing potential (ϕ) map

Observed CMB maps

• MUSE equations to get bandpower estimate

$$\begin{split} s_{i}^{\mathrm{MAP}}(\hat{\theta}, d) &= \left\langle s_{i}^{\mathrm{MAP}}\left(\hat{\theta}, d'\right) \right\rangle_{d' \sim \mathcal{P}\left(d'|\hat{\theta}\right)} \\ s_{i}^{\mathrm{MAP}}(\theta, d) &= \left. \frac{d}{d\theta_{i}} \mathrm{log} \mathcal{P}(\hat{f}, \hat{\phi}, \theta|d) \right|_{\theta} \end{split}$$

$$\hat{f}, \hat{\phi} = \underset{f,\phi}{\operatorname{argmax}} \mathcal{P}(f, \phi, \theta | d)$$

$$\begin{split} d^{\nu,i} &= \mathbb{M}_{\text{fourier}} \cdot \mathbb{M}_{\text{trough}} \cdot \mathbb{M}_{\text{pix}} \cdot \left(\mathbb{PWF} \cdot \mathbb{TF}^{\nu} \cdot \mathbb{R}(\psi_{\text{pol}}^{\nu}) \cdot A_{\text{cal}}^{\nu,i} \cdot \mathbb{B}(\beta_n, \beta_{\text{pol}}^{\nu}) \cdot \mathbb{G} \cdot \mathbb{P} \cdot \mathbb{L}(\phi) \cdot f \\ &+ \epsilon_{\text{Q}}^{\nu,i} \cdot t_{\text{Q}}^{\nu} + \epsilon_{\text{U}}^{\nu,i} \cdot t_{\text{U}}^{\nu} + n^{\nu} \right) \end{split}$$

• MUSE equations to get bandpower estimate

$$s_{i}^{\text{MAP}}(\hat{\theta}, d) = \left\langle s_{i}^{\text{MAP}}\left(\hat{\theta}, d'\right) \right\rangle_{d' \sim \mathcal{P}(d'|\hat{\theta})}$$

$$s_{i}^{\text{MAP}}(\theta, d) = \left. \frac{d}{d\theta_{i}} \log \mathcal{P}(\hat{f}, \hat{\phi}, \theta|d) \right|_{\theta}$$
Simulated CMB Maps/
Mock CMB Maps
$$\hat{f}, \hat{\phi} = \underset{f, \phi}{\operatorname{argmax}} \mathcal{P}(f, \phi, \theta|d)$$
Simulated CMB Maps via the simulation model

$$d^{\nu,i} = \mathbb{M}_{\text{fourier}} \cdot \mathbb{M}_{\text{trough}} \cdot \mathbb{M}_{\text{pix}} \cdot \left(\mathbb{PWF} \cdot \mathbb{TF}^{\nu} \cdot \mathbb{R}(\psi_{\text{pol}}^{\nu}) \cdot A_{\text{cal}}^{\nu,i} \cdot \mathbb{B}(\beta_n, \beta_{\text{pol}}^{\nu}) \cdot \mathbb{G} \cdot \mathbb{P} \cdot \mathbb{L}(\phi) \cdot f + \epsilon_{\text{Q}}^{\nu,i} \cdot t_{\text{Q}}^{\nu} + \epsilon_{\text{U}}^{\nu,i} \cdot t_{\text{U}}^{\nu} + n^{\nu} \right)$$

• MUSE equations to get bandpower estimate

$$\begin{split} s_{i}^{\mathrm{MAP}}(\hat{\theta}, d) &= \left\langle s_{i}^{\mathrm{MAP}}\left(\hat{\theta}, d'\right) \right\rangle_{d' \sim \mathcal{P}(d'|\hat{\theta})} \\ s_{i}^{\mathrm{MAP}}(\theta, d) &= \left. \frac{d}{d\theta_{i}} \mathrm{log} \mathcal{P}(\hat{f}, \hat{\phi}, \theta|d) \right|_{\theta} \\ \hat{f}, \hat{\phi} &= \operatorname*{argmax}_{f, \phi} \mathcal{P}(f, \phi, \theta|d) \end{split} \qquad \begin{array}{l} \text{Accurate simulation} \\ \text{model is the key to get} \\ \mathrm{unbiased bandpower} \\ \mathrm{estimates from MUSE.} \end{split}$$

$$\begin{split} d^{\nu,i} &= \mathbb{M}_{\text{fourier}} \cdot \mathbb{M}_{\text{trough}} \cdot \mathbb{M}_{\text{pix}} \cdot \left(\mathbb{PWF} \cdot \mathbb{TF}^{\nu} \cdot \mathbb{R}(\psi_{\text{pol}}^{\nu}) \cdot A_{\text{cal}}^{\nu,i} \cdot \mathbb{B}(\beta_n, \beta_{\text{pol}}^{\nu}) \cdot \mathbb{G} \cdot \mathbb{P} \cdot \mathbb{L}(\phi) \cdot f \\ &+ \epsilon_{\mathbf{Q}}^{\nu,i} \cdot t_{\mathbf{Q}}^{\nu} + \epsilon_{\mathbf{U}}^{\nu,i} \cdot t_{\mathbf{U}}^{\nu} + n^{\nu} \right) \end{split}$$

Validation Test – bandpowers on mocks

- No bias on the mean bandpowers estimated on a set of 100 mocks larger than 3σ .
- The scatter of mean bandpowers are within 10% of the statistical uncertainty.

*All means joint analysis of 95+150+220 GHz.

*Colored lines show mean bandpowers over 100 mock sims.

*Gray bands show 1σ and 2σ error of 95+150+220 results. ¹⁰

Results – bandpowers

• LCDM model fits SPT data well and in agreement with Planck.

Results – bandpowers

Results – H0*

*Assuming LCDM model

Results – S8*

*Assuming LCDM model

Results – amplitude of nonlinear structure growth

$$C_L^{\phi\phi} = C_{L,\text{lin}}^{\phi\phi} + A_{\text{mod}}^{\text{CMB}} (C_{L,\text{nonlin}}^{\phi\phi} - C_{L,\text{lin}}^{\phi\phi})$$

- Our results yields 3σ detection of non-linear structure growth in CMB lensing
- The A_mod from CMB lensing is consistent with 1 within 1.5σ .

Results – amplitude of nonlinear structure growth

• If the solution to S8 tension is due to unknown physics of non-linear structure growth, our result suggests it to happen at a later time or at smaller scales.

Negative neutrino mass?

• Negative neutrino mass is found when the CMB lensing power spectrum is rescaled based on neutrino mass.

(Craig et al <u>2405.00836</u>)

Results – excess lensing power

SPT result shows the mild excess lensing power relative to LCDM prediction when using Planck Plik PR3 likelihood.

20

Joint ACT+Planck+SPT Lensing Analysis

• The joint lensing likelihood produces a measurement of the CMB lensing amplitude with a SNR at 61 sigma.

Frank Qu KIPAC

Results – excess lensing power

• Mild excess lensing power relative to LCDM prediction persists with updated primary CMB and BAO data.

Planck¢¢+ACT¢¢+SPT¢¢ +P-ACT T&E +PlanckT&E+BAO* +P-ACT T&E+DESI2

- A_2pt scales the LCDM lensing power used to *compute lensed TT/TE/EE spectra*
- A_recon scales the LCDM lensing power used to *predict reconstructed lensing power*

Results – constraints on LCDM extensions

Ext. Parameter	WMAP+SPT	Planck	Planck+SPT	Planck+ACT+SPT	$Planck{+}ACT{+}SPT{+}BAO$
Ω_k	$ -0.021^{+0.014}_{-0.011}$	-0.0070 ± 0.0056	-0.0098 ± 0.0052	$-0.0076\substack{+0.0053\\-0.0047}$	0.0014 ± 0.0014
w_0	$-1.42\substack{+0.29\\-0.47}$	$-1.48\substack{+0.20\\-0.37}$	$-1.52\substack{+0.18 \\ -0.35}$	$-1.52\substack{+0.19 \\ -0.35}$	-1.075 ± 0.046
w_0	$-1.10\substack{+0.50\\-0.69}$	$-1.18\substack{+0.46\\-0.62}$	$-1.16\substack{+0.48\\-0.60}$	$-1.18\substack{+0.48\\-0.58}$	-0.65 ± 0.23
w_a	$-1.1^{+0.6}_{-1.9}$	$-1.06\substack{+0.61\\-1.94}$	$-1.18\substack{+0.52\\-1.82}$	$-1.21\substack{+0.57\\-1.79}$	$-1.15\substack{+0.71\\-0.59}$
$N_{ m eff}$	2.95 ± 0.33	2.89 ± 0.18	2.85 ± 0.16	2.66 ± 0.14	2.86 ± 0.13
$\Sigma m_{ u}$	$< 0.38 \mathrm{eV}$	$< 0.31\mathrm{eV}$	$< 0.17{\rm eV}$	$< 0.20\mathrm{eV}$	$< 0.075\mathrm{eV}$
$N_{ m eff}$	2.95 ± 0.32	2.89 ± 0.19	2.84 ± 0.17	2.67 ± 0.14	2.83 ± 0.13
$\Sigma m_{ u}$	$< 0.38\mathrm{eV}$	$< 0.31\mathrm{eV}$	$< 0.17\mathrm{eV}$	$< 0.21\mathrm{eV}$	$< 0.061\mathrm{eV}$
$N_{ m eff}$	2.79 ± 0.52	2.8 ± 0.3	2.77 ± 0.26	2.60 ± 0.23	2.89 ± 0.23
$Y_{\rm P}$	0.256 ± 0.028	0.248 ± 0.018	0.250 ± 0.016	0.246 ± 0.014	0.241 ± 0.015

*ACT refers to ACT DR4 T&E + ACT DR6 lensing. *BAO refers to data before DESI DR2.

Summary

- Using MUSE method for optimal inference, this analysis yields the most precise measurement of φφ at L>350 and EE at l>2200 from SPT-3G polarization maps.
- The SPT results using polarization signal are comparable to Planck at H0 and S8.

 $H_0 = 66.81 \pm 0.81 \text{ km/s/Mpc}$

 $S_8 = 0.850 \pm 0.017$

- Assuming LCDM, SPT results are consistent with Planck and ACT, passing a powerful test of the standard cosmological model.
- SPT results also shows the mild excess lensing power relative to LCDM prediction.
- We first see >3σ detection of non-linear structure growth in CMB lensing, and consistent with A_mod=1.
- For the LCDM extension models, we find no preference for significant deviations of the standard cosmology values using Planck, ACT and SPT data.
- Soon-to-come SPT likelihood release with 2019/20 Main TT/TE/EE results will provide powerful tests on LCDM model.

Backup Slides

Validation Test – data test

• Good overall agreement between bandpowers from single frequency results.

Post-Unblinding Changes

- Polarized Beam models
 - The sidelobes are only partially polarized.

$$\mathbb{B}_{T}^{\nu}(\beta_{n}) = \mathbb{B}_{0}^{\nu} + \beta_{1}\mathbb{B}_{1}^{\nu} + \beta_{2}\mathbb{B}_{2}^{\nu} + \dots$$
$$\mathbb{B}_{P}^{\nu}(\beta_{n}, \beta_{\text{pol}}^{\nu}) = \mathbb{B}_{\text{main}}^{\nu} + \beta_{\text{pol}}^{\nu}\left(\mathbb{B}_{T}^{\nu}(\beta_{n}) - \mathbb{B}_{\text{main}}^{\nu}\right)$$
sidelobes

• The impact is mainly on inferred EE bandpowers and shifts in ωb and ns.

Excess lensing power

• A_2pt scales the LCDM lensing power used to compute lensed TT/TE/EE spectra

 A_recon scales the LCDM lensing power used to predict reconstructed lensing power

Excess lensing power

• A_2pt scales the LCDM lensing power used to compute lensed TT/TE/EE spectra

 A_recon scales the LCDM lensing power used to predict reconstructed lensing power

Results – excess lensing power

Other SPT-3G Surveys

Survey	Area [deg^2]	Year	Coadd Noise [muK-arcmin]
Main	1500	2019-2020	3.3
Wan	1500	2019-2023, 2025-2026	1.6
Summer	2600	2019-2023	6.5
Wide	6000	2019-2024	8.8