

The SPT AGN Monitoring Program

John C. Hood II | Aidan F. Simpson

U.S. DEPARTMENT

of **ENERGY**

THE UNIVERSITY OF CHICAGO

Kavli Institute for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

1

What are AGN?

Background introduction to active galactic nuclei

² My Study Blazars?

Motivation for studying these objects

3

AGN in SPTpol

Overview of AGN Monitoring in SPTpol

4

AGN in SPT-3G

Future & Current work to be done with SPT-3G data

What are AGN?

- Active Galactic Nuclei (AGN) are extremely luminous supermassive black holes at the very center of galaxies
- This luminosity is caused by the accretion of matter onto these black holes, and sometimes a relativistic jet
- What we observe is dependent on the properties of the AGN and the viewing angle
- When the jet of an AGN is pointed directly at us we observe a blazar
 - These are typically the brightest type of AGN in the millimeter wave (mm-wave)

Blazar Emission Characteristics

- Blazars have a characteristic double humped spectrum caused by synchrotron radiation and inverse compton scattering/hadronic processes
- By studying these objects in the mm-wave we are probing synchrotron emission from the jet

Why Study Blazars in the mm-wave?

- AGN feedback plays a large role in galaxy formation, and has the capacity to reduce star formation and/or alter the kinematics and structure of the host galaxy
- Using our mm-wave data we can study the structure and activity of the jets which can drive feedback

CMB Telescopes as AGN Monitors

- "It has recently been recognized that cosmic microwave background (CMB) experiments have the potential to be used as AGN monitors" (e.g., Holder et al. 2019).
- high signal-to-noise ratio (S/N) in short observations.
- Good instantaneous point source sensitivity
- High-cadence observations of the same patch of sky over many years.
- Capable of building the first high cadence catalogs of AGN in mm-wave.

South Pole Telescope

Photo credit: NSF

•	2007:	SPT-SZ
---	-------	--------

- Temp
- 2012: SPTpol
 - Temp + Pol
- 2017: SPT-3G
 - Temp + Pol
- ~1 arc minute res.

Dutcher et. al. 2021

	# detectors	Area (deg²)	95 GHz (uK-arcmin)	150 GHz (uK-arcmin)	220 GHz (uK-arcmin)
SPT-SZ (main)	960	2500	40	17	80
SPTpol (main)	1600	500	13	6	-
SPT-3G (main)	16,000	1500	3.0	2.2	8.8

SPTpol 500 deg² Survey

- SPTpol: second generation camera used to observe the CMB intensity and polarization
- ~3500 observations over ~9000 hours, covering 22^h to 2^h in right ascension and -65° to -50° in declination.
 Right Ascension
- Two frequencies observed:
 - ➢ 90 GHz
 - ≻ 150 GHz
- Observes same patch every 2 hours
- Using CMB maps for time domain study
 - 4 year coadd \rightarrow 36 hour bundles
 - > 450+ observations
 - Observes flux variability

THE ASTROPHYSICAL JOURNAL LETTERS, 945:L23 (8pp), 2023 March 10 © 2023. The Author(s), Published by the American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/2041-8213/acbf4

AGN Variability Pilot Study

- Long time scale correlations with Fermi and SPT.
- Short time scale correlations with Fermi and optical.
- Short time scale correlations with Fermi and SPT.
- No measurable correlation with SPT and optical.

Light Curve Statistics					
Dataset	zero-lag correlation	zero-lag p-value			
SPT x Fermi year one (smoothed)	0.75	2.9×10^{-2}			
SPT x Fermi year one (smoothed & detrended)	-1.3×10^{-2}	0.52			
Smarts x Fermi year one (smoothed)	0.92	3.0×10^{-4}			
Smarts x Fermi year one (smoothed & detrended)	0.92	$< 10^{-4}$			
SPT x Smarts year one (smoothed)	0.48	0.16			
SPT x Smarts year one (smoothed & detrended)	2.6×10^{-2}	0.47			
SPT x Fermi year two (smoothed)	0.23	0.32			
SPT x Fermi year two (smoothed & detrended)	0.67	$1.0 imes 10^{-3}$			
Smarts x Fermi year two (smoothed)	0.54	$7.4 imes 10^{-2}$			
Smarts x Fermi year two (smoothed & detrended)	0.34	8.7×10^{-2}			
SPT x Smarts year two (smoothed)	0.32	0.26			
SPT x Smarts year two (smoothed & detrended)	9.7×10^{2}	0.36			

Source: Hood et al 2023

STRAWHAT Catalog and Expansion

Proposed Expansion:

- SPT Treasury Record of AGN With Historical Activity and Time-series
- Includes SPTPol 90 and 150 temperature data
- Include SPT-3G 90, 150, and 220 flux and polarization data for bright AGN
- Build joint AGN catalog including data from SO and ACT and CMB-S4

https://spt3g.ncsa.illinois.edu/datasets/spt_agn_lightcurves/

AGN in the SPT-3G 1500 deg ² Main Field

SPT-S J021045-5100.9 | 4FGL J0210.7-5101 | PMN J0210-5101 220.0 م لا 4000 الم 150.0 90.0 S 2000 -0.290 - 150 -0.4 $\alpha_{90}^{-0.4}$ -0.8[%]*Qd* 100 EVPA [°] -100-200 58700 58900 59100 59300 59500 59700 59900 60100 60300 58500 Time [MID]

5 years of data spanning from 2019-2023

*

*

*

- The SPT-3G survey is significantly more sensitive at all frequencies than SPTpol, particularly 90 GHz
 - The field is larger meaning more bright sources
 - SPT-3G unlocks polarization data for a large number of sources

Science Goals for AGN in SPT-3G

- Characterize emission types and states with spectral variability (jet activity)
- Investigate the disk-jet connection with simultaneous X-ray data (jet launching)
- Investigate short timescale variability mechanisms with TESS (jet structure & activity)
- Search for Electric Vector Polarization Angle (EVPA) rotations (*jet structure & activity*)

Polarization Angle Rotations

- In 2009 a change in optical polarization angle was seen coincident with a optical flare and gamma-ray flare
- The low time delay between the gamma-ray flare and the change in optical polarization angle suggests that the emission originated from the same region of the jet
- Still many open questions:
 - What physical process causes these events?
 - Are the gamma-ray flares physically connected to the rotations?
 - Is it the same for every event in every AGN?

Polarization Angle Rotations in SPT-3G

- We see large polarization angle rotations in many of our sources
- With enough of these events we hope to assemble a sample that can distinguish between different models:
 - Stochastic (random changes within the jet)
 - Deterministic (physical mechanisms)

Summary

- CMB experiments are a good tool for AGN monitoring in the mm-wave
- We have a SPTpol and an even better SPT-3G sample
 - If you have any neat ideas for this data let us know!
- In the era of time-domain astronomy, CMB experiments like SPT serve a crucial role in complementing telescopes such as Vera Rubin

