Jeff Filippini **ILLINOIS** mm Universe 2025 - June 23, 2025

SPIDER Cosmology and Galactic Dust from the Edge of Space

Big bang, inflation

Formation of CMB

Dark ages

Cosmic dawn

Reionization

Structure growth

Dark energy domination

5

S

Scalar (density) perturbations

Tensor perturbations (gravitational waves)

H. Chiang

Primordial gravitational waves

Quantum Fluctuations

Inflation

Tensor-to-Scalar Ratio

Density perturbations

PRECISION

Approach <u>photon noise limit</u> Few photons, many detectors

ACCURACY

Rigid control of polarized <u>systematics</u> Instrument symmetry

The SPIDER Program

A **balloon-borne** payload to identify **primordial B-modes** on degree angular scales in the presence of **foregrounds**

Two flights with broad frequency coverage over a large sky area (~10%) to map (and distinguish) CMB polarization and Galactic emission

SPIDER-1 (2014-15): 95, 150 GHz

Description: Fraisse+ JCAP 04, 047 (2013) B-modes: Ade+ ApJ 927, 174 (2022) Foregrounds: Ade+ ApJ 978, 130 (2025)

SPIDER-2 (2022-23): 95, 150, 280 GHz Instrument: Shaw+ JATIS 10, 044012 (2024)

Support from NASA SMD (mission, science, detectors) and NSF OPP (Antarctic logistics)

Balloonatics

Imperial College London

Why Ballooning?

The Good

- High sensitivity to approach CMB photon noise limit
- Access to higher frequencies obscured from the ground
- Technology pathfinder for orbital missions

se limit

The Bad

- Limited integration time (~weeks)
- Stringent mass, power constraints
- Very limited bandwidth demands nearly autonomous operations

Excellent proxy for space operations!

8

Galactic Foregrounds

Planck 353 GHz dust polarization

Observing Bands

Planck polarized observing bands

Planck 2018 (full sky, 40' smoothing)

The SPIDER Payload Pivot Telescope aperture Sun shield Vacuum vessel / Top dome Vacuum vessel / Midsection Hermetic feedthroughs Carbon fiber gondola Reaction wheel Support XX instrumentation package (SIP)

Lightweight carbon fiber gondola

- Az/el drives, redundant pointing sensor suite
- Launch mass ~3000kg
- Large (1300 L) shared LHe cryostat
- Six monochromatic refractors
 - Modular design for multiple frequencies
 - Cold optics (HDPE), 270mm stop
 - Stepped sapphire half-wave plate
 - Superconducting bolometer arrays
- Design emphasis on low internal loading - 1.6 K absorptive baffling, reflective fore baffle - Reflective filter stack, thin (3/32") window

The SPIDER Payload

 Lightweight carbon fiber gondola - Az/el drives, redundant pointing sensor suite - Launch mass ~3000kg

• Large (1300 L) shared LHe cryostat

- Six monochromatic refractors
 - Modular design for multiple frequencies
 - Cold optics (HDPE), 270mm stop
 - Stepped sapphire half-wave plate
 - Superconducting bolometer arrays
- Design emphasis on low internal loading - 1.6 K absorptive baffling, reflective fore baffle - Reflective filter stack, thin (3/32") window

300 K Forebaffle Window VCS2 Filters 150 K VCS1 Filters HWP_ **4K Filters** Primary Lens Stop. 2 K Secondary Lens Focal Plane 300 mK Vacuum Vessel

- Lightweight carbon fiber gondola
 - Az/el drives, redundant pointing sensor suite
 - Launch mass ~3000kg
- Large (1300 L) shared LHe cryostat

Six monochromatic refractors

- Modular design for multiple frequencies
- Stepped sapphire half-wave plate
- Superconducting bolometer arrays
- Design emphasis on low internal loading
 - Cold optics (HDPE), 270mm stop
 - 1.6 K absorptive baffling, reflective fore baffle
 - Reflective filter stack, thin (3/32") window

TES Bolometer Arrays

Planar phasedarray antennas **95**, **150** GHz

Ade+ ApJ 2015

• Monolithic Transition-edge sensor (TES) polarimeter arrays (~2500 channels total)

• **Dual TES**: science ($T_c \sim 0.5K$) and lab ($T_c > 1K$); designed for **low loading / high sensitivity**

• **Time-division** SQUID multiplexer (TDM); *NIST cold electronics, UBC MCE warm electronics*

SPIDER-1 January 1-18, 2015 3x95 + 3x150 GHz

Observations cover 12.3% of the sky *Hit-weighted 6.3%*

Published analysis focuses on a reduced central sky mask: 4.8% sky 1992 deg² rectangle, point sources cut

The View From Above

Band	Center [GHz]	Width [%]	FWHM [arcmin]	# Det. Used	NET _{tot} [µK√s]	Data Used [days]	Map Depth
95 GHz	94.7	26.4	41.4	675	7.1	6.5	22.5
150 GHz	151.0	25.7	28.8	815	6.0	5.6	20.4

SPIDER 95 GHz

Spider 150 GHz

Analysis Pipeline

- Two independent power spectrum estimation pipelines
 - XFaster: Hybrid maximum likelihood
 Pseudo-Cl + iterative quadratic estimator
 A.E. Gambrel, A.S. Rahlin, C. Contaldi, ...
 ApJ 922, 132 (2021)
 - NSI: "Noise-Simulation Independent" *Empirical covariances among data subsets J. Nagy, J. Hartley, S. Benton, J. Leung, ...*
- Suite of null tests to confirm internal consistency in both pipelines
- Full time-domain simulations to calibrate methods, systematics

Error bars do not include sample variance, for ease of pipeline comparison

Sample variance included

CMB Results

ApJ 927, 174 (2022)

Dust Foregrounds and CMB Analysis

Right Ascension

- Dust polarization physics is **complex** and incompletely understood
 - Dust grain compositions and shapes
 - Local radiative / magnetic environment
- CMB analysts make various **assumptions** to link multi-frequency observations
 - **Morphology** constant with frequency? Uniform SED, template subtraction
 - Simple **SED** form? Modified blackbody: $B_{\nu}^{(d)} \propto \nu^{\beta_{d}} B_{\nu}(T_{d})$
 - Simple **angular power spectrum**? Power law: $C_{\ell}^{(d)} \propto \ell^{-\alpha_d}$
- **Goal**: Test common analysis assumptions with deep maps over a large sky area at high Galactic latitude

ApJ 978, 130 (2025)

Testing Common Assumptions

Frequency spectrum

No significant evidence of deviations when considering entire SPIDER region

Angular power spectrum

Comparisons to common forecasting models (PySM)

ApJ 978, 130 (2025)

Spatial Variation?

- Good consistency among SPIDER bands
- P_d^+ largely consistent with MBB SED similar to Planck full-sky, using either template
- **Inconsistency** between $P_{\rm d}^+$ and $P_{\rm d}^-$
- No good MBB fit within $P_{\rm d}^-$

ApJ 978, 130 (2025)

- Divide SPIDER sky patch into two regions: brighter dust (P_d^+), fainter dust (P_d^-)
- Find correlation amplitudes between SPIDER 95/150 with 353/217 templates

More data needed!

Sasha Rahlin

SPIDER Flights

SPIDER 1+2 with Commander Polarized Dust

Observing region shifted toward Galaxy

Suren Gourapura

280 GHz Receiver Performance

Low total photon loading

South Pole T_{atmo} ~ 24 K_{rj} (ACBAR 280) SPIDER-1 90/150 ~ 2.5 K_{ri}

Photon noise-limited performance

"Stare" noise (no scanning)

Plots by Elle Shaw (Shaw+ JATIS 2024)

280 GHz Receiver Performance

Preliminary "bottom-up" calibration (not from sky)

	GHz	uK∙√s
Planck-HFI	353	112
BOOMERanG	345	201
ACBAR	280	800
SPIDER-2	280	11
BOOMERanG	245	158
Planck-HFI	217	28

Most instantaneouslysensitive 280 GHz receiver ever deployed

Plots by Elle Shaw (Shaw+ JATIS 2024)

SPIDER-2 Mapmaking

Pointing solution undergoing iterative improvement from onboard sensors + sky regression

Flagging and low-level analysis (including sky calibration) ongoing

Preliminary temperature maps show good agreement with SPIDER-1 and with Planck

Calibration and filtering <u>not</u> final!

Plots by Ivan Padilla

SPIDER-2 Polarization

Early days, but signs are encouraging

Much more to come!

Maps shown use non-science filtering and calibration

Plots by Ivan Padilla

LAMBDA -	Data Produc	ts
Data Hosted	Experiment Table	es Space-Based
Overview		
Products		
Publications	Product Download Page	
	General Products WGET DL CURL DL	beam, filter transfer function, ban
	Map Products WGET DL CURL DL	mask, sample simulation map pair
	Likelihood Products WGET DL CURL DL	r likelihood curve. More
	Product Download Page	
	Circular polarization data WGET DL CURL DL	CMB circular polarization results a

				×,
Suborbital	Astrophysical	About Products		
SPIDER Dat	a Products			
SPIDER 1 C	MB Results			
D	escription		No. o Files/S	of ize
dpower window, i	functions, bandpowers, a	nd covariance matrices.	. More 50 file each	es MB
rs, map pixel weig	ghts. More		43 file 10.6 M each	s, 1B
			1 file 5 KB	51
Circular polar	ization data			
C	escription		No. o Files/S	of ize
s discussed in Na	gy et al. 2017 More		3 files 25.2 M	< 1B

Major science products released from SPIDER-1 papers Full SPIDER-1 map release almost ready SPIDER-2 maps and products will also be public

Conclusions

SPIDER-1 major analysis complete B-mode, foreground, technical papers published; public release in progress Possible evidence for complex foreground structure - needs more data! **SPIDER-2** analysis is well underway Most sensitive instrument to date at 280 GHz NASA funding to complete two-flight CMB / foreground analysis **Success is people** SPIDER has trained 30+ Ph.D. students, 9 postdocs, numerous undergrads

Backup

Flagged samples

Mostly transmitter RFI Occasional cosmic rays Osherson+ JLTP 2020

Automated bias monitor

TES bias square waves on turnaround to monitor (and correct) TES state *Filippini+ JLTP 2022*

Scan-sync pickup Managed for now with aggressive filtering

A.S. Rahlin

Focus on **XFaster** with **353-100 template subtraction** as primary result

Constraining r

Point estimate

Feldman-Cousins (*frequentist*) constraint

Bayesian constraint

 $r = -0.21^{+0.12}_{-0.15}$ *r* < 0.11

Rich and interesting effects from varying data, estimators (all unbiased on sims)

Reasonable agreement among various methods when applied to similar data selections

Foreground Scaling Constraints

217-100 GHz template

Hubmayr+ SPIE 2016 Bergman+ LTD 2017

Dust Busters

NIST platelet horn array AIMn science TES

Details in Shaw+, SPIE 2020; arXiv:2012.12407

