An Overview of Line Intensity Mapping at Millimeter Wavelengths

Abby Crites Cornell University June 26th, 2025

Outline

- 1. What is line intensity mapping and why this technique is promising at mm wavelengths.
 - a. Ionized carbon line
 - b. Carbon monoxide lines
- 2. Challenges and opportunities using line intensity mapping.
 - a. Technology
 - b. Masking and component separation
- 3. The experimental landscape of mm line intensity mapping.
 - a. A quick overview of the landscape
 - b. TIME status

- mm Universe 2025 -

The LIM Community

Yearly meetings and semi-regular status reports Lots of the plots in this talk especially modeling and visualizations come from these reports

Many models for signals and few measurements!

Line-Intensity Mapping: Theory Review with a focus on star-formation lines

J. L. Bernal · E. D. Kovetz

2206.15377

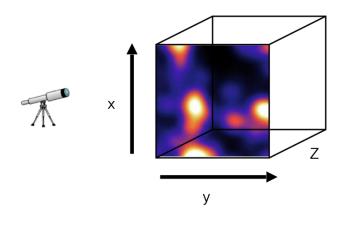
Line-Intensity Mapping: 2017 Status Report

Snowmass 2021 Cosmic Frontier White Paper: Cosmology with Millimeter-Wave Line Intensity Mapping

> Kirit S. Karkare^{1,2}, Azadeh Moradinezhad Dizgah³, Garrett K. Keating⁴, Patrick Breysse⁵, Dongwoo T. Chung^{6,7}, for the Snowmass 2021 Cosmic Frontier 5 Topical Group ,

Endorsers: James Aguirre⁸, Zeeshan Ahmed^{9,10}, Adam Anderson², Pete S. Barry¹¹, Ritoban Basu Thakur¹², Bradford Benson^{2,1}, José Luis Bernal¹³, Federico Bianchim^{9,10}, Simeon Bird¹⁴, C. Matt Bradford^{15,12}, John E. Carlstrom^{1,11}, Emanuele Castorina¹⁶, Andrea Caputo¹⁷, Clarence Chang^{11,1}, Tzu-Ching Chang^{15,12}, Yun-Ting Cheng¹², Cyril Creque-Sarbinowski¹³, Abigail T. Crites¹⁸, Oliver Doré^{15,12}, Jacques Delabrouille^{19,20,21}, Simone Ferraro²¹, Jeffrey Filippini²², Yan Gong²³, Ely Kovetz²⁴, Guilaine Lagache²⁵, Adam Lidz⁸, Abhishek S. Maniyar⁵, Daniel P. Marrone²⁶, Jeff McMahon¹, Zhaodi Pan¹¹, Emmanuel Schaan²¹, Erik Shirokoff¹, Sara M. Simon², Gordon Stacey¹⁸, Eric R. Switzer²⁷, Peter Timbie²⁸, Joaquin Vieira²², Gensheng Wang¹¹, W. L. Kimmy Wu¹⁰, and Michael Zemcov²⁹

- mm Universe 2025 -

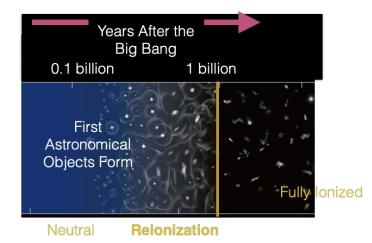
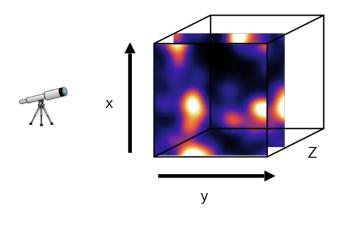
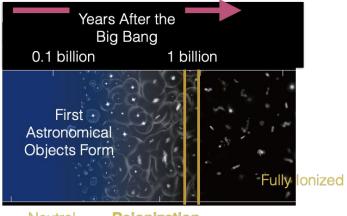
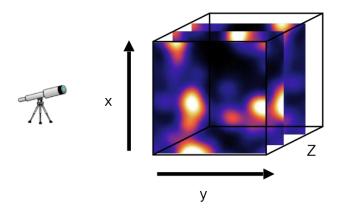

Line Intensity Mapping

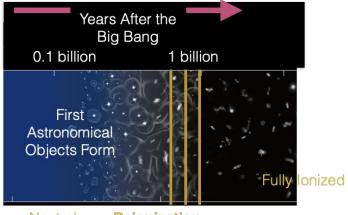
Measuring the CMB or many things we've heard about here is "intensity mapping"

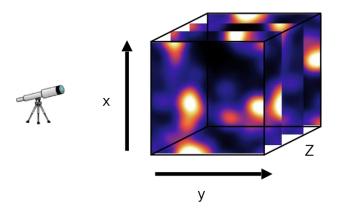
Map a spectral line over cosmological volume

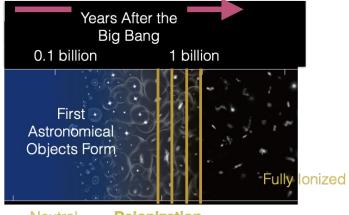
Individual sources are not resolved –Integrate photons from many dim sources – detection threshold not required

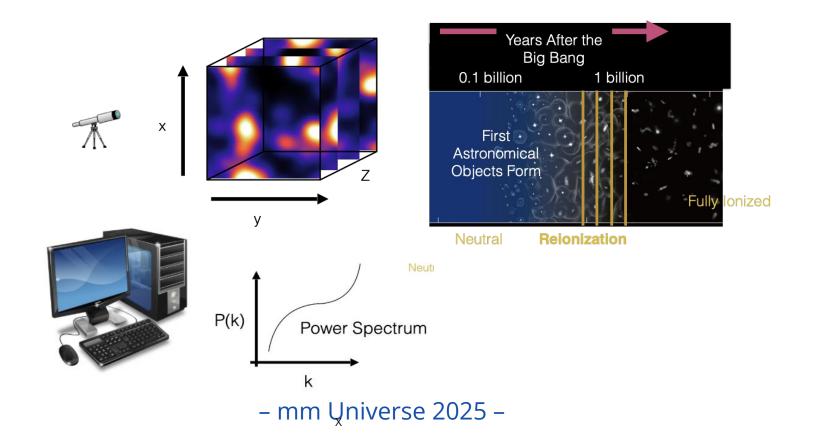
Information extracted from the power spectrum

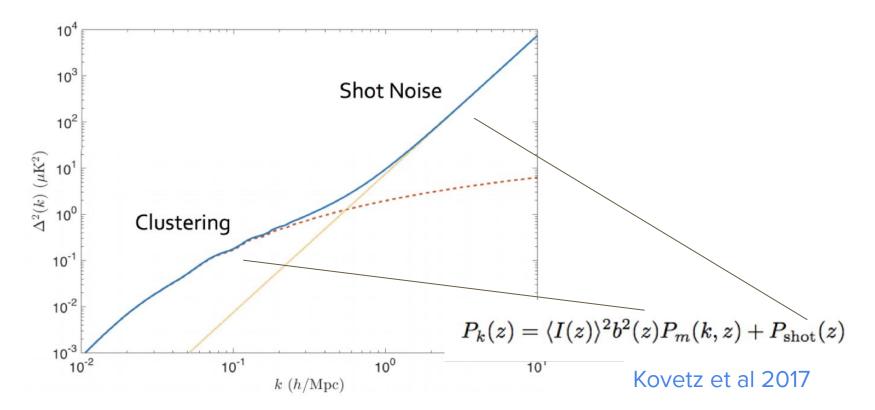

Image credit: NAOJ/ALMA http://alma.mtk.nao.ac.jp/ - mm Universe 2025 Image Credit: Tony Li

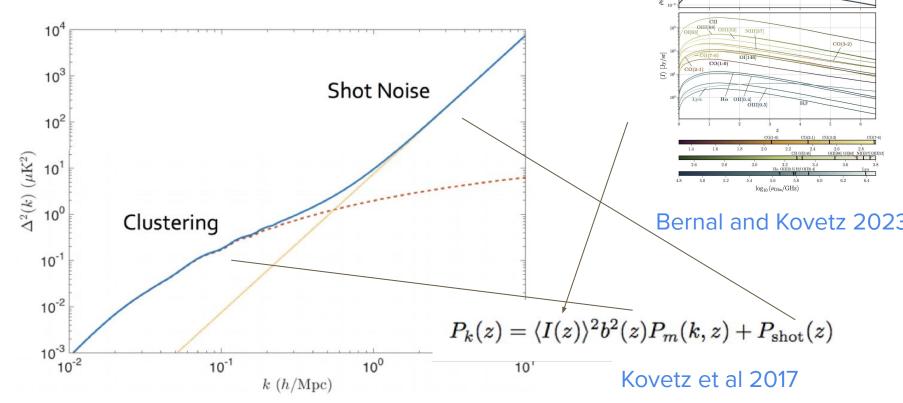


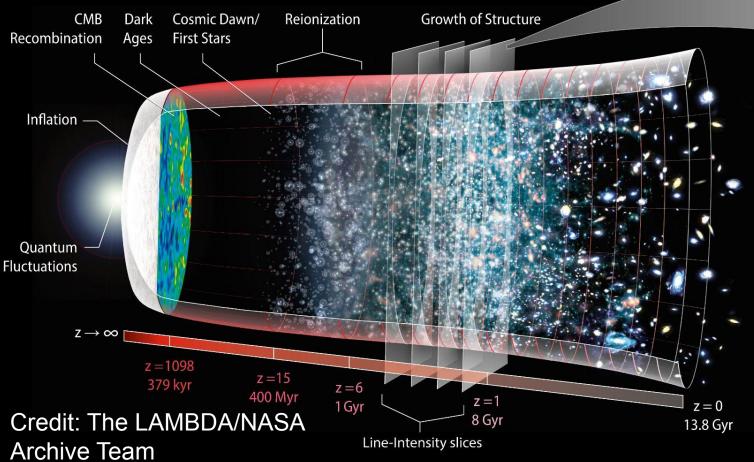

Neutral **Reionization**



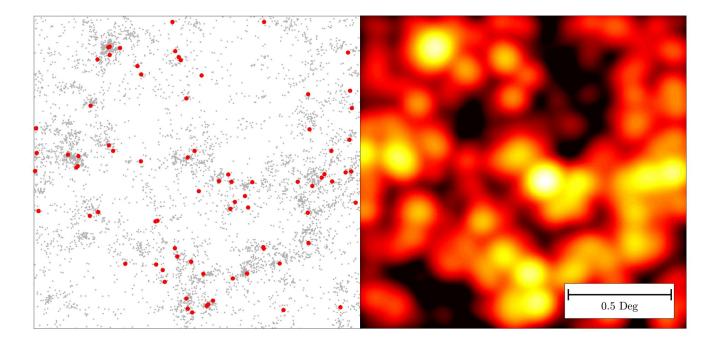
Neutral **Reionization**




Neutral **Reionization**


What information do we get from the power spectra we measure?

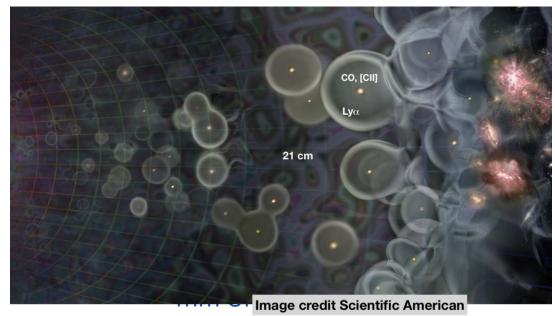
What information do we get from the power spectra we measure?



Line Intensity Mapping (LIM)

Line-Intensity Mapping simulation with galaxy distributions

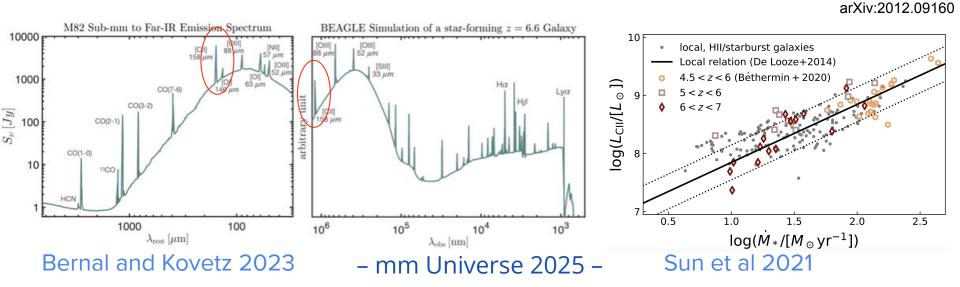
Efficient Coverage of Cosmological Volumes



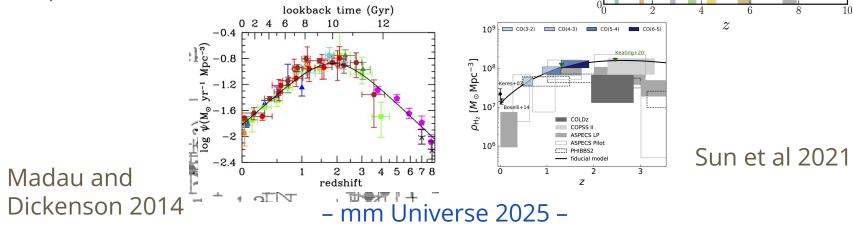
– mm Universe 2025 –

Breysse, Kovetz ++ 2017

Why LIM at mm wavelengths?


[CII], CO, and more are bright lines in galaxies and will allows us to trace structure, probe reionization, star formation, and cosmology!

[CII]


Fine structure line at 158 um

- Traces star formation
- Typically very bright
- Frequency range with technology experience

CO

- Molecular gas is "fuel" for star formation
- Many lines = Cross-correlation
- Probe at a range of frequencies
- Again, frequency range with technology experience

Roy and Battaglia 2024

500

400

200

100

 $\nu_{\rm obs} \, [\rm GHz]$

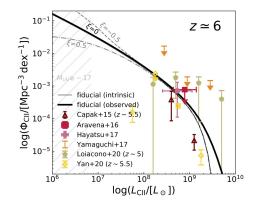
 $C_2 \quad C_3 \quad C_4 \quad C_5 \quad C_6$

 C_7

We can use CO and [CII] across redshifts!

Science Targets

Star formation across cosmic time


Probing reionization

3D "tomography" of [CII] / CO across cosmic time

- dark energy, LSS evolution, neutrinos

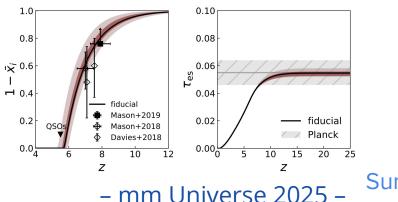
1.0

Sun et al 2021

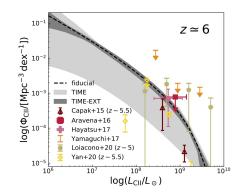
See also Gkogkou 2023 and many others

0.8 0.08 40.0 م م ^{...} X' **H** 0.4 0.04 fiducial Mason+2019 0.2 0.02 fiducial Mason+2018 050 Planck Davies+2018 0.00 0.0^L 12 10 10 15 20 25 8 5 z Ζ Sun et al 2021 - mm Universe 2025 -

0.10


Science Targets

Star formation across cosmic time


Probing reionization

3D "tomography" of [CII] / CO across cosmic time

- dark energy, LSS evolution, neutrinos

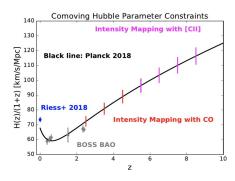
[CII] Luminosity Function

Sun et al 2021

See also Gkogkou 2023 and many others

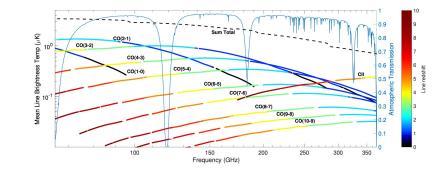
Sun et al 2021

Science Targets


Spec-hrs	Example	Deployment Timescale	$\sigma(M_ u$	$\sigma(M_{ u}) \; [{ m eV}]$		$\sigma(N_{ m eff})$	
			Int.	No Int.	Int.	No Int.	
10^{5}	TIME	Now	0.69(0.066)	0.48(0.061)	2.8(0.11)	2.0(0.10)	
10^{6}	TIME-EXT	3 yr	0.21 (0.047)	0.14(0.043)	0.87(0.087)	0.67(0.082)	
10^{7}	SPT-like, 1 tube	4 yr	0.066 (0.028)	$0.044\ (0.023)$	0.27 (0.051)	$0.21 \ (0.043)$	
10^{8}	SPT-like, 7 tubes	8 yr	$0.021 \ (0.013)$	0.014(0.0097)	0.088(0.023)	0.0674(0.020)	
10^{9}	CMB-S4-like, 85 tubes	12 yr	0.0087 (0.0068)	0.0048 (0.0041)	0.045 (0.016)	0.022(0.013)	

Star formation across cosmic time

Probing reionization


3D "tomography" of [CII] / CO across cosmic time

- dark energy, LSS evolution, neutrinos

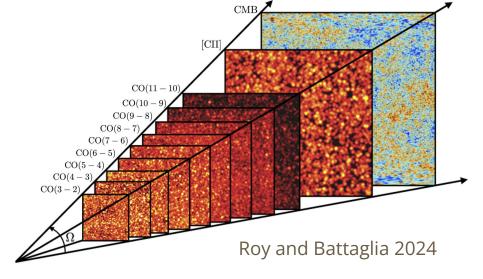
Karkare and Bird 2018 Moradinezhad Dizgah and Keating 2018 And more!

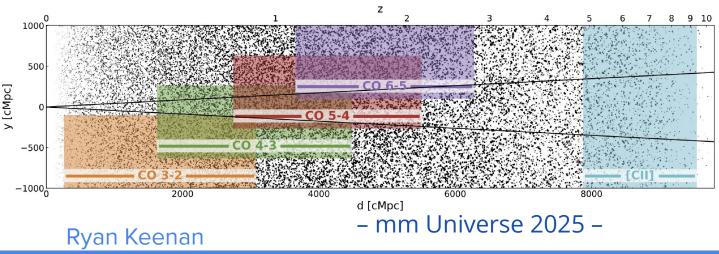
– mm Universe 2025 –

Moradinezhad Dizgah et al 2022

Need to understand and remove interlopers and have very high sensitivity

Interloper lines

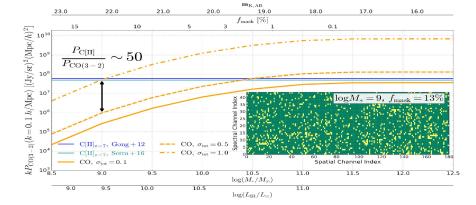

Instrument systematics

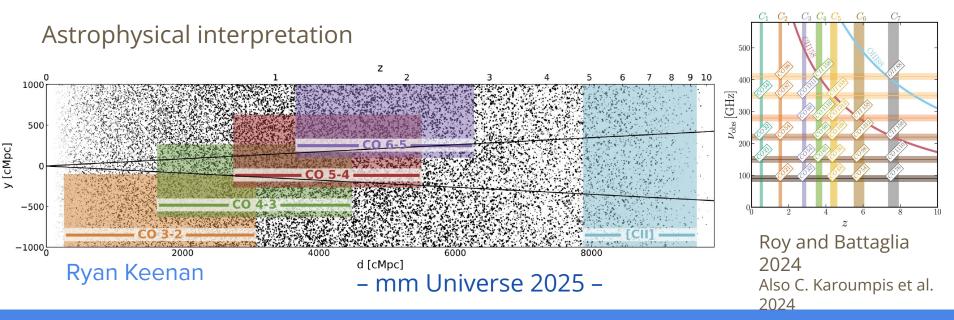

Astrophysical interpretation

Interloper lines

Instrument systematics

Astrophysical interpretation

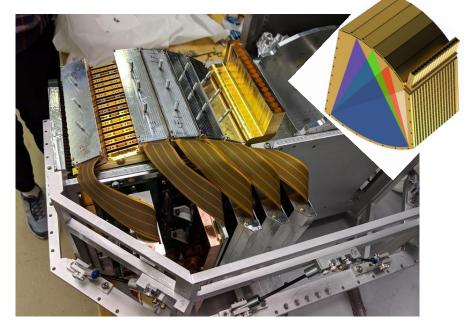




Interloper lines

Sun+2018

Instrument systematics

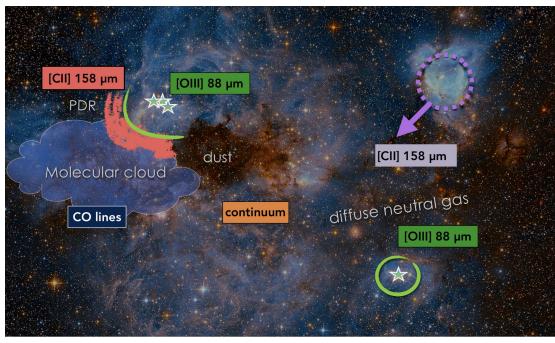


Interloper lines

Instrument systematics

Astrophysical interpretation

You need a mm-wavelength spectrometer and sensitive detectors (TES or KIDS) Grating On-chip spectrometers Fabry-Perot interferometer Fourier transform spectrometers Waveguide spectrometers Combinations of these!



Interloper lines

Instrument systematics

Astrophysical interpretation

We need theory / modeling as well as measurements to tease out astrophysics and cosmology

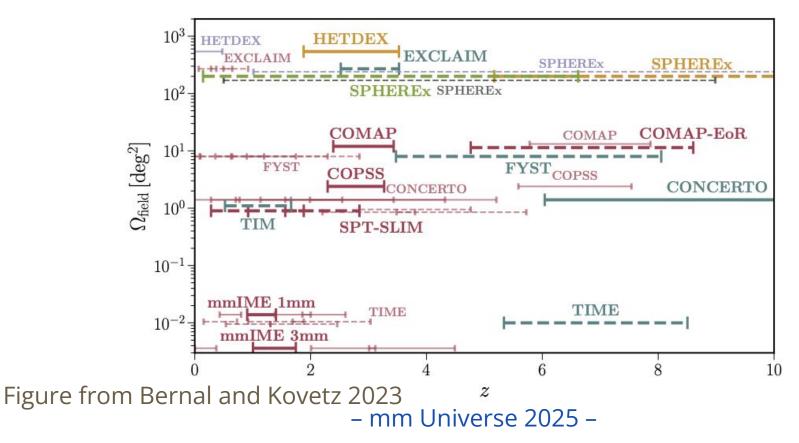
Things we don't know: escape fractions of photons, metallicity, and more.

From Livia Vallini

Quick overview of experiments

Range of technology for doing mm - THz spectroscopy

Experimental systematic checks


Multiple science goals with these experiments (e.g. [CII], CO)

Astrophysical systematics checks

You will hear about SPT-SLIM and COMAP right after my talk so I'll update on TIME and CCAT and touch on a few other experiments in the field in *roughly* chronological order.

Experimental Landscape

Experimental Landscape

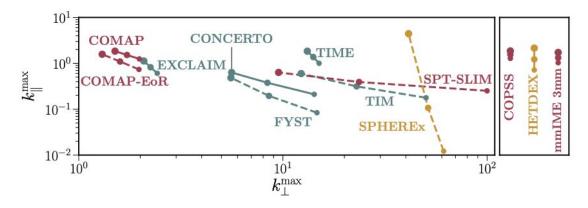
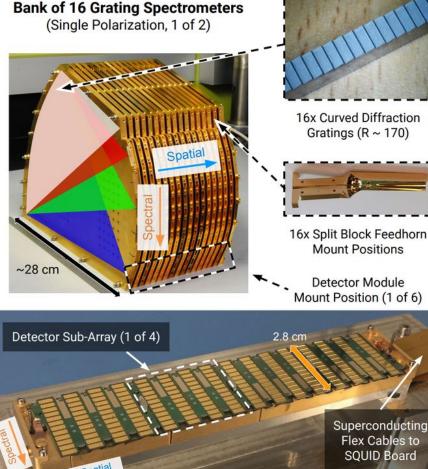


Figure from Bernal and Kovetz 2023


- mm Universe 2025 -

TIME-The Tomographic Ionized-Carbon Mapping

Experiment

- 2x 16 feedhorns under a polarizer
- ~1 arcmin beam
- 2x grating spectrometers, R~100, 183-326 GHz, bw ≈ 1.5 GHz
- 3x LF/HF modules: 4 spatial × 8/12 spectral channels
- Total: 16 spatial × 60 spectral → 960 TES pairs for 1D science scans
- Arizona Radio Observatory 12m

The TIME Collaboration

Abigail Crites [PI] Victoria Butler Dongwoo Chung Ben Vaughan Shwetha Prakash Selina Yang Sophie McAtee Sofia Pereira Sukhman Singh

Jamie Bock Matt Bradford Tzu-Ching Chang Yun-Ting Cheng Clifford Frez Kenny Lau Paolo Madonia Lorenzo Moncelsi Anthony Turner

中央研究院 天文及天文物理研究所 ACADEMIA SINICA Institute of Astronomy and Astrophysics Chao-Te Li

Tashun Wei

THE UNIVERSITY Dan Marrone

Nick Emerson Isaac Trumper Evan Mayer lan Lowe

Rochester Institute

Mike Zemcov Audrey Dunn Fiona Hufford Tess Caze-Cortes Caleb Greenburg

UCI University of California, Irvine Asantha Coorav

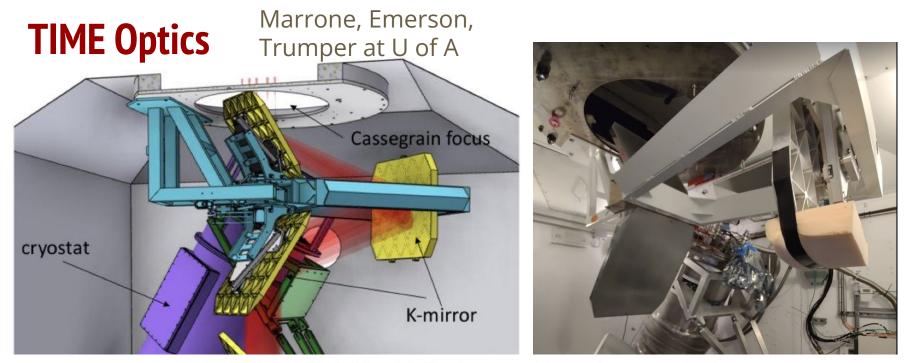
Samantha Berek Dang Pham Baria Khan Lisa Nasu-Yu

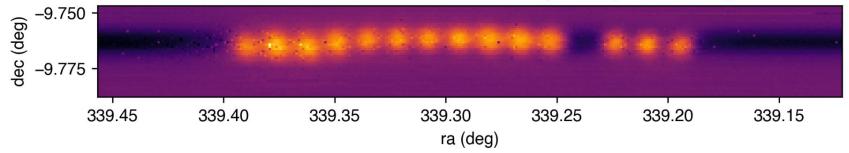
Ryan Keenan

Northwestern • LER A Guochao (Jason) Sun

supported in part by: 23080{39,40,41,42}]

INSTITUTE FOR SPACE STUDIE





– mm Universe 2025 –

Shwetha Prakash Victoria Butler Selina Yang

Jupiter, 2022/01/31, with K-mirror tracking to keep feeds along ra

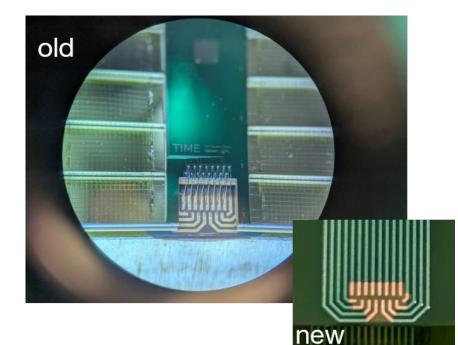
TIME Status I

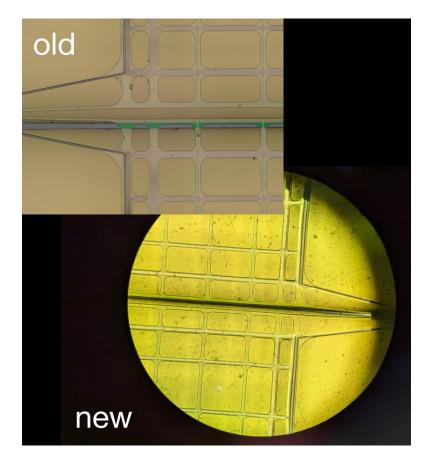
Two commissioning runs in 2022 and 2024

- operated from the Arizona Radio Observatory 12 m telescope, at Kitt Peak
- verified on-sky focus, beams with partially integrated instrument
- verified hyperspectral imaging with both continuum and spectral line sources

TIME Status II

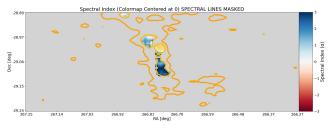
- Currently analyzing data from observations of nearby objects to verify spectral capabilities, calibration, and the TIME data pipeline.
- We use a set of well-understood technologies combined into a pathfinding experiment for mm-wave LIM, surveying [C II] at EoR and CO rotational lines near 'cosmic noon', z~2.
- Our commissioning runs in 2022 and 2024 provided important tests of the TIME instrument—some avenues of clear improvement.
- We expect to begin science observations this upcoming winter.

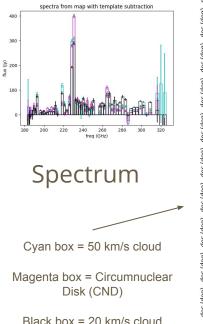

- mm Universe 2025 -

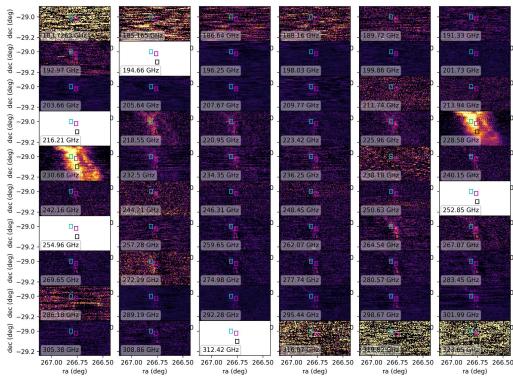

TIME Status II

- Currently analyzing data from observations of nearby objects to verify spectral capabilities, calibration, and the TIME data pipeline.
- We use a set of well-understood tech pathfinding experiment for mm-wave rotational lines near 'cosmic noon', z~
- Our commissioning runs in 2022 and the TIME instrument—some avenues
- We expect to begin science observation

Parameter	TIME	TIME-EXT	
Number of spectrometers (N_{feed})	32	32	
Dish size (D_{ap})	12 m	10 m	
Beam size $(\theta_{\rm FWHM})^{\rm a}$	0.43 arcmin	0.52 arcmin	
Spectral range $(\nu_{\min}, \nu_{\max})^b$	183-326 GHz	183-326 GHz	
Spectral bands	LF: 200-265 GHz	LF: 200-265 GHz	
Spectral bands	HF: 265-300 GHz	HF: 265-300 GHz	
Resolving power (R)	90-120	90-120	
Observing site	ARO	LCT	
Noise equivalent intensity (NEI)	$5{\rm MJysr^{-1}s^{1/2}}$	$2.5{\rm MJysr^{-1}s^{1/2}}$	
Total integration time (t_{obs})	1000 hours	3000 hours	
Survey power ^c	1	12	

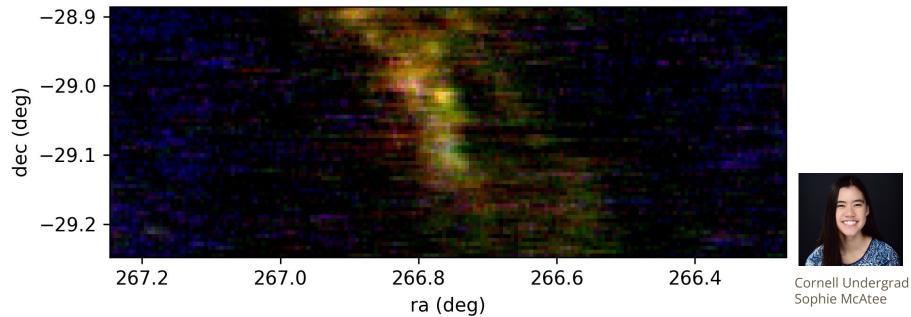

Hardware Upgrades




Kenny Lau

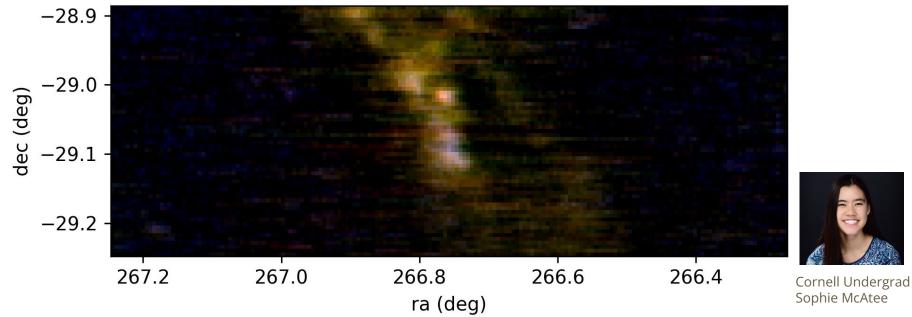
Measurements of the Galactic Center

Sgr A/CMZ, 2022/02/08, 40 min, with template subtraction

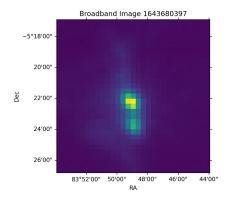

Spectral Index map

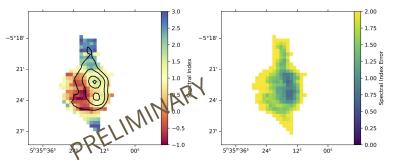
Butler et al 2024 Proceedings of the SPIE, Volume 13102, id. 131022G 11 pp. (2024).

More detailed publication in prep in measurements of the galactic center. Chung, Yang, McAtee

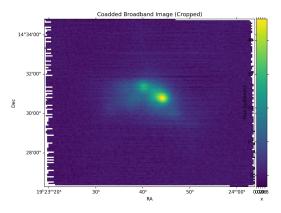

Exploring Atmospheric Noise Removal Strategies

Pre-PCA False Color


Exploring Atmospheric Noise Removal Strategies


Post-PCA False Color

OMC and other sources


OMC (Vaughan, Prakash, Butler ++ paper in prep)

The Knight's Den The Knight's Den

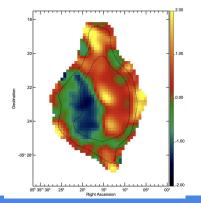
- mm Universe 2025 -

CONCERTO

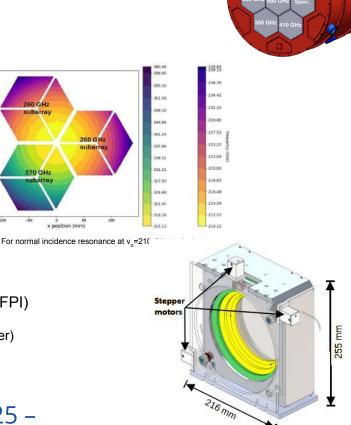
CONCERTO

- Funded by ERC 2018 Adv. Grant (+A*MIDEX+FOCUS)
- KIDS arrays (2 arrays of 2,152 KIDS) cooled down at 60mK
- Spectra from 130 to 310 GHz, δν up to 1.5 GHz, FOV D~18'
 - Dust continuum emission, CO lines at z<2.5, [CII] line at z>5
 - * Galaxy cluster (SZ), star forming regions & molecular clouds

 Installation successful (despite covid restrictions), first light (May the 6th) rapid & wonderful!


Scientific observations from July 2021 to Dec 2022

- 18 months of (quite smooth) operation
- * 174Tb of data (x5 uncompressed)
- * « [CII] LIM » Large Program on the COSMOS field (1.4 Sq. Deg)
- 12 open time programs (Galactic regions, SMC, galaxy clusters)


Continuum, CO and Water vapour maps of the Orion Nebula First millimetre spectral imaging with CONCERTO

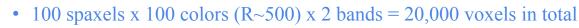
Désert et al 2025

LIM on FYST: CCAT/Prime-Cam/EoR-Spec Overview

- Frequency Coverage: 210 420 GHz in total
 - [CII] 158 micron: z ~ 8.0 to 3.5 epoch of reionization to cosmic noon
 - [OI] 88 micron: z ~ 7.1 to 15.2 epoch of reionization
- Detector array is split:
 - two subarrays (3174 det./module) covering: 210 315 GHz
 - one subarray(3072 det./module) covering 315 420 GHz
 - Spectrometer is based on a cryogenic tunable Farby-Perot Interferometer (FPI)
 - a single FPI covers both broad frequency bands simultaneously (2nd and 3rd order)
 - spectral resolving power: R ~ 100
- Total Field of View (FoV): ~1.3° /module
- mm Universe 2025 -

EoR-Spec Instrument module

Scanning, cryogenic Fabry-Perot Interferometer (FPI) located at the Pupil of the cold optics.


Frequency coverage: 210 - 420 GHz Redshift for [CII]: z ~ 8.0 to 3.5 (Late stages of EoR to cosmic noon) Total Field of View (FoV): (~1.3°/module) Angular resolution 30" to 50" Spectral resolution R~100 – mm Unive

LIM on FYST Status

- FYST currently being assembled, first light 2026, LIM starting 2026/2027
- Focus on [CII] and CO LIM first round of observations 210-420GHz with EoR spec
- Challenges are to isolate [CII] signal
 - Targeted Masking
 - Spectral line deconfusion
 - Cross-correlations
- Additional low frequency bands being considered for future spectrometer

https://ccatobservatory.org/

Dual-band line intensity mapping using TIFUUN THz Integral Field Units with Universal Nanotechnology Redshift

Simultaneous observations of line pairs at the same redshift range □ cross-correlation to mitigate contaminations & systematics

		139 – 170 Band-1	Integral Field		DES HIM A 1.0	DES HIM A 2.0		N for line mapping
				Frequen cy range	332 - 377 GHz	220 – 440 GHz	Band-1 139-17 0 GHz	Band-2 248-301 GHz
		z = 12.6		Band-w idth	45 GHz	220 GHz	31 GHz	53 GHz
	Z =	10.2 248 - 301		Number of spaxels	1	1	100	100
[CII] emitters	z = 6.6 5.3	Band-2		Number of spectral channel s		347	100	100
Redshift range	Band-1	Band-2		Spectral resoluti		~500	~500	~500
z = 10.2 - 12.6	[CII] 158 µm	[OIII] 88 µm	Field of view (@ASTE)	on				
		CO(7-6), [CI](2-1)		Number of KIDs		347	10,000	10,000
z = 1.9 - 2.2	CO(4-3), [CI](1-0)	CO(7-6), [CI](2-1)	Sarcmin (Band-2)	Deploy-m ent	2017	2023- 2024	2020	5-2029

A growing field!

https://lambda.gsfc.nasa.gov/product/expt/lim_experiments.html

Lambda hosts a list of current and future lim experiments – we are focused on the mm ones, but folks are doing lim in radio, TeraHz, IR, optical (e.g. 21 cm, SPHEREx)

LIM Overviews:

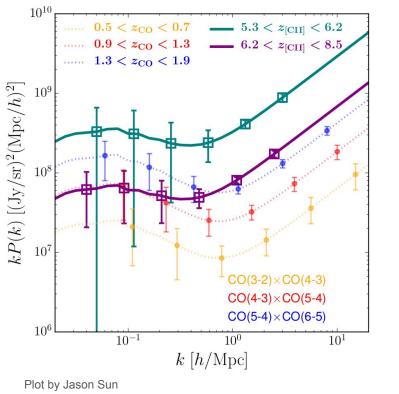
Yearly LIM conferences and summary papers

Kovetz et al 2019 arXiv:1903.04496

Bernal and Kovetz 2022 arXiv:2206.15377

COMAP Pathfinder *	Array Pathfinder [ADS]	CO 1-0	star formation	2019 - date	Coherent	2.4	3.4	26	34	Ground
COMAP Pathfinder *	CO Mapping Array Pathfinder [ADS]	CO 2-1	reionization	2019 - date	Coherent	5.8	7.8	26	34	Ground
CONCERTO *	CarbON CII line in post- rEionization and ReionizaTiOn epoch [ADS]	[CII]	reionization	2021-date	MKID, FTS	4.5	8.5	200	360	Ground
CONCERTO *	CarbON CII line in post- rEionization and ReionizaTiOn epoch [ADS]	CO J={2,3,4,5}	star formation	2021-date	MKID, FTS	0.3	2	200	360	Ground
COPSS	CO Power Spectrum Survey [ADS]	CO 1-0	star formation	2005-2008	Interferometer	2.3	3.3	27	35	Ground
TIME-CII *	Tomographic Ionized-Carbon Mapping Experiment [ADS]	[CII]	reionization	Future	Grating + TES	5.3	8.5	183	326	Ground
TIME-CO *	Tomographic Ionized-Carbon Mapping Experiment [ADS]	CO J={2,3,4,5}	star formation	Future	Grating + TES	5.3	8.5	183	326	Ground
YTLA *	Yuan-Tseh Lee Array	CO 3-2	star formation	2017-date	Interferometer	2.4	3	86	102	Ground
YTLA *	Yuan-Tseh Lee	CO 2-1	star formation	2017-date	Interferometer	1.2	1.7	86	102	Ground

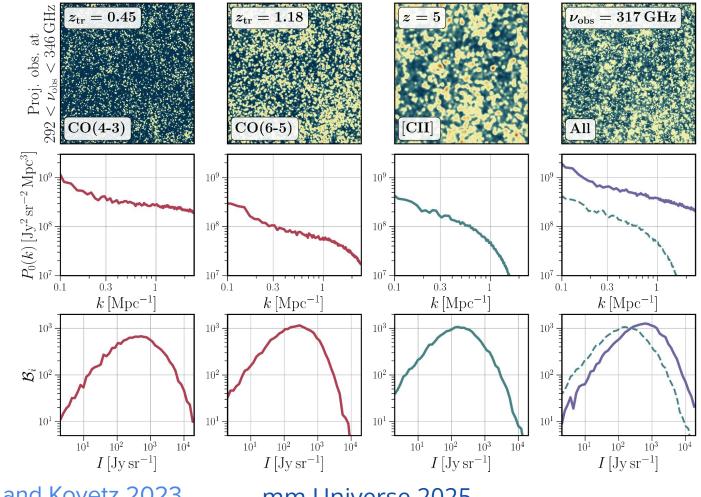
Conclusions


Line intensity mapping in the mm wavelengths will use technologies similar to the ones that have been developed in our field to probe astrophysics and cosmology over cosmic time – in particular star formation during reionization and survey molecular gas at $z \sim 2$

There are many folks working on modeling and measuring line intensity mapping signals in the mm-wavelengths using CO and [CII] and we hope to have first measurements of this signal soon

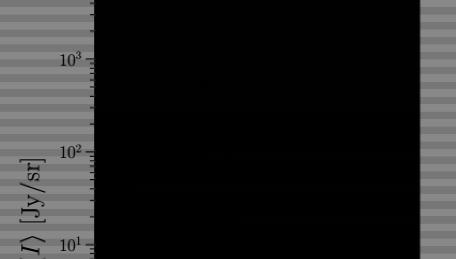
- mm Universe 2025 -

TIME Predicted Power Spectrum



Sun et al 2021

- mm Universe 2025 -


Error bars assume

1000 hr TIME survey

Bernal and Kovetz 2023

Bernal and Kovetz 2023

Parameter	TIME	TIME-EXT		
Number of spectrometers (N_{feed})	32	32		
Dish size (D_{ap})	12 m	10 m		
Beam size $(\theta_{\text{FWHM}})^a$	0.43 arcmin	0.52 arcmin		
Spectral range $(\nu_{\min}, \nu_{\max})^b$	183-326 GHz	183-326 GHz		
Spectral bands	LF: 200-265 GHz	LF: 200-265 GHz		
Spectral ballus	HF: 265-300 GHz	HF: 265-300 GHz		
Resolving power (R)	90-120	90-120		
Observing site	ARO	LCT		
Noise equivalent intensity (NEI)	$5{\rm MJysr^{-1}s^{1/2}}$	$2.5MJysr^{-1}s^{1/2}$		
Total integration time (t_{obs})	1000 hours	3000 hours		
Survey power ^c	1	12		