

Finanziato dall'Unione europea NextGenerationEU

Cosmology from the gas distribution from CHEX-MATE and X-COP to SPT

Vittorio Ghirardini and Stefano Ettori

on behalf of CHEX-MATE collaboration

mm Universe 2025

25 June 2025

Cluster number count

Borgani+ 2001

• Gas mass fraction

• Size temperature relation

• SZ vs X-ray pressure

• Emission measure profile

Allen+ 2007 Ettori+ 2009 Mantz+ 2014,2022

Mohr+ 2000

Bonamente+ 2006 Kozmanyan+ 2019

• Clusters are representative chunks of the Universe

Allen+ 2007 Ettori+ 2009 Mantz+ 2014,2022

• Size temperature relation

• SZ vs X-ray pressure

• Emission measure profile

Mohr+ 2000

Bonamente+ 2006 Kozmanyan+ 2019

• Clusters are representative chunks of the Universe

Allen+ 2007 Ettori+ 2009 Mantz+ 2014,2022

• Redshift independent relation for self-similar scenario

Mohr+ 2000

• SZ vs X-ray pressure

• Emission measure profile

Bonamente+ 2006 Kozmanyan+ 2019

• Clusters are representative chunks of the Universe

Allen+ 2007 Ettori+ 2009 Mantz+ 2014,2022

Mohr+ 2000

• Redshift independent relation for self-similar scenario

• Angular diameter distance proxy

• Emission measure profile

Bonamente+ 2006 Kozmanyan+ 2019

• Clusters are representative chunks of the Universe

Allen+ 2007 Ettori+ 2009 Mantz+ 2014,2022

Mohr+ 2000

• Redshift independent relation for self-similar scenario

• Angular diameter distance proxy

Bonamente+ 2006 Kozmanyan+ 2019

• Gravity is self-similar \Rightarrow minimal scatter profiles

Dataset

- X-COP: 12 massive clusters $(M_{500} > 4 \times 10^{14} M_{\odot})$ at 0.05 < z < 0.1
- HIGHMz: 32 massive clusters $(M_{500} > 7.75 \times 10^{14} M_{\odot})$ at 0.2 < z < 0.6
- SPT: 7 massive clusters $(M_{500} > 3 \times 10^{14} M_{\odot})$ at z > 1.2

Data

mm Universe 2025

25 June 2025

Data

Modeling of systematics

- Mass bias
 - \blacktriangleright the adopted hydrostatic mass has to be calibrated

- Helium abundance
 - \blacktriangleright strongly connected with X-ray emissivity

$$\epsilon \approx \int n_e n_{\rm H} \Lambda(T_e) \left(1 + 4 \frac{n_{\rm He}}{n_{\rm H}}\right) dl$$

• Size temperature evolution

• Emission measure scaling

Mass calibration

mm Universe 2025

Helium abundance

Parameter priors

Parameter	Prior			
• Cosmology		Parameter	Prior	
$\Omega_m h^2$	$\mathcal{U}(0.033, 1.5)$		• Gas mass	fraction
h	$\mathcal{U}(0,1,1,3)$		η_f	from measured slopes
$\Omega_{ m b}h^2$	$\mathcal{U}(0.013, 0.033)$		$\widetilde{f_{\star}}$	$\mathcal{N}(0.015, 0.005^2)$
$\log 10^{10} A_{\odot}$	$\frac{1}{2}$			$\mathcal{U}(0.001, 0.2)$
n_{\cdot}	$\frac{1}{1}(0,9,1,05)$		a,b,c,d	$\rm from \ Rasia{+}2025$
π_s	$\Lambda(0.0544, 0.00732)$		• Size - temperature relation	
$\frac{7}{0.1^2}$	$\mathcal{N}(0.0344, 0.0073)$		R_0	U(300, 2000)
$\Omega_{\nu}h^{2}$	$\mathcal{U}(0, 0.01)$			$\mathcal{U}(0,2)$
w	$\mathcal{U}(-3,1)$			$\mathcal{U}(0.001,1)$
• Mass calibration				$\mathcal{U}(-5,5)$
$lpha_0$	$\mathcal{U}(-2,2)$		• SZ vs X-ray pressure	
σ_0	$\mathcal{U}(0.01, 1)$		σ_n	$\mathcal{U}(0.001, 1)$
α_1	from HSC		\mathcal{B}^{\prime}	from Kozmanyan+19
β_1	from HSC		• Emission	measure profiles
σ_1	$\mathcal{U}(0.01,1)$		O'EM	$\mathcal{N}(0,1)$
$ ho_{ m hydro-WL}$	$\mathcal{U}(-0.99, 0.99)$			

Fitting

Preliminary results: flat Λ CDM

Preliminary results: flat ΛCDM

Preliminary results: flat Λ CDM - H_0

Preliminary results: flat $\Lambda CDM - \Omega_m$

mm Universe 2025

Preliminary results - w

mm Universe 2025

25 June 2025

Preliminary results - w

- Gas distribution can provide excellent constraints with just few clusters (32+12+7)
- Systematics are accounted for and marginalized in the analysis

To do list:

- $\Rightarrow\,$ Selection to be taken into account
- \Rightarrow Relax some priors from simulations