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Day 1: General

Lecture 1   Colliders  - V.Shiltsev (NIU)

Lecture 2  Beam Optics – J.Eldred (FNAL)

Lecture 3  Beam Dynamics – V.Shiltsev
 

Homework: ~1 hrs in groups + 2 hrs together 
 - V.Shiltsev, J.Eldred, B.Simmons (NIU)
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This School is “Just About Concepts” 

…by no means even a comprehensive intro

US PAS : US Particle 
Accelerator School 
https://uspas.fnal.gov/

CAS: CERN Accelerator 
School 
https://cas.web.cern.ch/ 

Even better: sign up for undergrad/grad 
programs in accelerators (>10 in the US Univ.) 

https://uspas.fnal.gov/
https://uspas.fnal.gov/
https://cas.web.cern.ch/
https://cas.web.cern.ch/


This

lecture
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Acceleration: Increase of Energy 

Energy gain is F[force] x L[distance]

Forces:  Strong/nuclear [local]

    Electromagnetic [used widely]

    Weak [??]

    Gravitational [see next slide]



Acceleration by the Fields of Gravity

6

 …collisions between particles free falling from infinity and 
a disk of material plunging off the retrograde innermost stable 
circular orbit of a near-extremal Kerr black hole… → result in rest-
frame energies at the level of 1 to 100’s of TeV (or more). 
MuColl'25 | Colliders VS1
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ENERGY: Ideas / Breakthroughts

#1   Electrostatic E  [10keV – 10 MeV ]

#2   Resonant/RF E [0.1 GeV – 1 TeV]

#3  Colliders Ecm     [1 GeV- 14 TeV] 

#4    Heavy leptons Epcm [10 - 100 TeV]

#5  Plasma Wakes E      [0.1- 1 PeV]
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ACCELERATORS vs COSMOS
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LHC

“Oh-My-God 
Particle”
(1991, Utah)

~45 orders of 
magnitude in flux

~8 orders of magnitude in 
energy



Lorentz-Invariant Mandelstam Variables
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s=E 
2

cme



Kinematics of collisions
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Two particles (E1,2 , m1,2) collide at angle θc 

One particle stationary (E2 =m2 c
2) 

Both particles move (E1,2 >>m1,2 c
2) 

Gain for (E= 6500 GeV, m=0.936 GeV) is ~120 times (0.11 vs 13 TeV) 



Types of colliding beam facilities
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Colliders Landscape
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61 years since 1st 

collisions

• Spring 1964 AdA and VEP-1

31 operated since

• (see RMP review)

7 in operation now

• see next slides

2 under construction

• NICA (2025) and EIC (2032)

At least 2 more types 

needed

• Higgs/Electroweak factories

• Frontier E >> LHC



Colliders: Energy
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Only Electric Field Boosts Energy 
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How much power is needed

Where “shunt impedance”:
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“Quality factor” 

~10^4 for Copper 300K

10^(9-10) for SC Nb cavities

“R/Q” cavity geometry factor

~100 for “open” elliptic cavities

196 Ohm for “pillbox” cvavity



RF Cavities
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Resonant cavity, eg “pill-box”:

R=10cm at fRF=1.14 GHz

Max gradient/voltage per cavity:
• Is determined by RF power and shunt 

impedance
• Is limited by breakdown or dark 

current radiation or loss of 
superconductivity
• depends on frequency, CW or pulse 

duration, geometry, material, 
temperature, etc

• Max ~100 MV/m in normal-
conducting cavities at 12 GHz

• Max ~31.5 MV/m SRF cavities 1.3GHz

LEP-I 352 MHz 

ILC 1300 MHz 



Rings vs 

Linacs
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lower Vacc if you can



Types of Circular Accelerators
▪ Cyclotrons – 1930-40’s

➢ E.O.Lawrence (UCB)

E[GeV]=0.3 B[T] R[m]

R is fixed [4.24km LHC]
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▪ Betatrons – 1940-50’s

➢ D.Kerst (UI)

Synchrotrons (Tevatron, LHC, MuColl)



Highest Energy = Highest Field SC Magnets

4.5 K He, NbTi

+ warm iron 

small He-plant

NbTi cable

cold iron  

Al collar

NbTi cable

simple & 

cheap

NbTi cable

2K He 

two bores

4.5T

8.3T

3.5T5.3T
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Key for Magnets: Current Density

Generation of a pure dipole 

by a cos θ current distribution
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Scaling: Bmax~ J/Aperture

(assume all A is filled by conductor)

J~j(current density) x A^2

Bmax~j x A

but Cost ~A^2 (cost of needed 

conductor) x length ~ A^2/B ~ 

~A/j

Therefore, high(est) current density 
is needed to maxizmize B-field and 
minimize Cost 

• For room temperature copper     
j~(1-10) A/mm^2

• For superconductors → kA/mm^2



Record fields attained with dipole 
magnets of various configurations 
and dimensions, and either at liquid 
(4.2 K, red) or superfluid (1.9 K, blue) 
helium temperature. 

Nb-Ti

Nb3Sn

Superconducting wire critical 
current density versus 
magnetic field: three main 
materials Nb-Ti, Nb3Sn, HTS

Nb-Ti
Nb3Sn

HTS
L. Bottura

P. Lee

SC Magnets: Fields and Current Densities
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• 15 T dipole demonstrator

• Staged approach: In first step pre-
stressed for 14 T 

• Second test in June 2020 with 
additional pre-stress reached 
14.5 T

60-mm aperture
4-layer graded coil

84% on the laodline at 1.9 K
92% on the loadline at 4.2 K

cos dipole

SC Accelerator Magnets: Current Record 14.5T 
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Focusing Beams with Quadrupole Magnets

yB

x

xB

y

Vertical Plane:

Horizontal Plane:

Luckily…

…pairs give net focusing in both planes! -> “FODO cell”

23



• As particles go around a ring, they 

will undergo a number of betatron 

oscillations ν (sometimes Q) given 

by

• This is referred to as the 

“tune”

• We can generally think of the tune in two parts:

Ideal 
orbit

Particle trajectory

=
)(2

1

s

ds




64.31Integer : 

magnet/aperture 

optimization

Fraction: 

Beam 

Stability

MuColl'25 | Colliders VS1
Betatron Oscillations, Tune

24 see Jeff’s lecture  



Particle Equations of Motion (1)
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Solution:

So, tune:
see Jeff’s lecture  



Key beam parameter: Emittance









x

'x

As a particle returns to the same point on 

subsequent revolutions, it will map out an 

ellipse in phase space – more in Jeff’s

lecture 

Area = 

β,γ, α - Twiss 

parameters

26




 =++
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''2 xxxx TTT

For an ensamble of particles:

• Product size x angle 

X_rms x X’_rms is called 

emittance

• Normalized emittance = 

emittance x gamma is an 

adiabatic invariant

• Luminosity (tbd) ~ 1/ε   



Image courtesy John Jowett
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Sigma

triplet

~5 km 1.1 mm
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σ’=32μrad σ’=0.14μrad

Ɛn = 1.8 mm·mradNumerical Example: LHC

β Sigma

~200 m 0.23 mm

σ’=0.67μrad

Final Focus quads 

~100 m from IPs

Regular LHC locations

in “arcs”

normalized emittance rms beam size

rms beam 
angular spread



Particle Equations of Motion (2)
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Also, note that nonlinear fields on beam orbit add complexity:
 

Beta-functions are defined by 

Eg symmetric solution in free space (K=0):

More in Jeff’s lecture

especially at resonant frequencies

n=1 dipole

n=2 quadrupole

n=3 octupole

n=4,5,6…



l

Collider Spot Size

 *

*l

to decrease the beam size
at the collision point we 
can reduce either * or 

s~*

bunch

z

beam
envelope

low-beta 

quadru-

pole

*:
- must remain larger than z (‘hourglass effect’)
-  quadrupole aperture must be respectedMuColl'25 | Colliders VS129



Longitudinal Motion: Phase Stability

)(tV

t
Nominal Energy

Particles with 

lower E arrive 

earlier and see 

greater V.

Particles are typically accelerated by radiofrequency (“RF”) 

structures.  Stability depends on particle arrival time relative to 

the RF phase. Note: the speed is fixed = speed of light , so time 

of arrival depends only on the energy (in the bunch – energy 

deviation wrt “reference central particle”) 

30

see Jeff’s lecture  



Example: LHC
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RF Frequency 400 MHz 
(35640 times revolution frequency) 

• RF Voltage =  8 cavities x 2 MV = 16 MV / turn (max) 

In collisions dE/dn= 0 V/turn (synchronouse phase ~0) 

Slow energy-position oscillations (23 Hz or ~500 turns) 

rms energy spread 1.3e-4 (1GeV)   rms bunch length ~ 8cm

31



Scales of Time-scales/Frequencies

32

…even slower might be operational processes :  
• injection/extraction (1/sec… 1/min… 1/hr … 1/day)

• beam cooling (sometimes - hours)
• luminosity decay (min… days)



BREAK (!...?)

33



Luminosity
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For (same size) Gaussian 
bunches:  



Luminosity: Unequal Bunches
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yields:  



Correction for Crossing Angle and Offset
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where:  

Offset d1-d2≠0   



“Crab Crossing” Collisions
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Note: either the crossing angle or amplitude of the crabbing affect 
instantaneous luminosity → can be used for “luminosity leveling”

Head-tail rotation by RF dipole deflectors (eg HL-LHC)



Hour-Glass Effect
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Same for 
beam size

σz << β*

σz > β*



Luminosity Reduction Due to Hourglass
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For round beams, equal beta’s and no crossing angle, H-factor  

In reality, beta* is often constant and 

bunchlength can grow leading to small 

decay of luminosity



Luminosity Summary  : Key Factors
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Want it higher 
either smaller rings = 

higher B

or high rep linear 

collider (= power)

High E helps
This factor comes from 
adiabatic reduction of 
the rms beam size for 
the same emittance

Higher intensity drives L note 

that N(bunch) comes squared while # of 

bunches linear; sometimes N is limited 

by beam-beam, often nbN is limited → 

try to put all charge in one bunch

Smallest emittance 
that’s where most of beam 

physics goes to – cooling to 

stop heating, noises, dyna-

mics in injectors, etc etc etc

Minimize beta 
need stronger 

focusing = larger 

aperture and stronger 

LB quads

Keep H under control 
keep bunch length and beta* 

more or less matched, be 

aware of the crossing angle 

(sometimes need it → crabs)



Colliders: Luminosity
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1ab-1/yr



Colliders: Need More Luminosity vs Energy
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future colliders future 

colliders



Luminosity evolution
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• Factors change in time

• Therefore, the lifetime



LHC Lumi Lifetime (~7 hrs) and Integral
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Colliders : Most Important Topics/Effects
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• Engineering of magnets, RF, PSs, vacuum, 

sources, targets, diagnostics, collimators, etc
– Exciting science: new acceleration techniques/plasma

•  Beam physics
– One particle: beam optics, long-term stability, resonances, losses, 

noises, diffusion/emittance growth, etc

– One beam: instabilities, synchtrotron radiation, beam-induced  

radiation deposition, intrabeam scattering, cooling, space-charge 

effects and compensation

– Two-beams: beam-beam effects and compensation, 

beamstrahlung, machine-detector interface, etc

•  Assuming particle physics interest → choice of 

accelerator scheme depends on
– Readiness, cost and power consumption vs E, L reach → MuColl



BREAK (!...?)

Muon Colliders

46



Colliding Leptons vs Hadrons

Protons
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ECM partons≈ 2E × 0.1

E=γmc2E=γmc2

ECM leptons=2E

Leptons
e+

μ+

τ+

e-

μ-

τ-



Muon Colliders in the US

48

Muon Collider eg at FNAL μ+μ-
   Circumference ~10 km, Ecm =3…10 TeV
   NC+SC magnets and SRF
  Cost ~12-18 B$ (ITF’21) 17±4 BCHF (IMCC’25)

   20 yrs of R&D
*no labor, escalation, or contingency

circular compact low(er)cos

t
low(est) power consumption

→ Fast production, cooling 

(size reduction)& 

acceleration

Muons decay quickly 2.2μs×γ

Fermilab site: about 3 x 4 miles, 6,800 acres



Muon Colliders: Main Challenges
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• Muons are not stable particles

– Muon lifetime at rest (mc^2=0.105 GeV) is 2.2 microseconds

– Muon lifetime at 5 TeV (collider γ≈50000) is 100 milliseconds

– Muon can be made available only as secondary or tertrially particle, 

products of reactions like 

• p(beam)+p(target)→ K,π → μ

• e+e- → μ+μ-

• γ + Ze → μ+μ- 

• That usually results in large emittance (large angular spread) 

muon beams and requires deep cooling for high Luminosity

• Therefore, major challenges for High Luminosity MC are: 

– Muon production

– Fast muon cooling

– Fast muon acceleration

– Neutrino flux hazard
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RAST, Vol 10, No. 01, pp. 189-214 (2019)

Muon Collider Parameter Table 
under development by the  International Muon Collider Collaboration



Average Luminosity of Muon Collider

NB: each muon makes ~300B[T] turns in a ring with average field B
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scales with B, the total beam power Pb, and the beam 

brightness (the third factor above is the beam-beam ξ)

The beta-function at the two IPs scales as β*~1/γ within certain range of 
energies, giving overall scaling Lumi ~ γ2 with other limiting parameters 
fixed. The main challenges to luminosity achievement with decaying 
particles are related to production and fast cooling and acceleration of 
O(1012) muons per bunch without emittance degradation.



(Explanatory to Previous slide)
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O(14 TeV) Muon Collider Sub-Systems (approx. to scale)
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Muon Collider Subsystems
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• (i) a high power proton driver (SRF 4 GeV 2-4 MW H- linac); 

• (ii) pre-target accumulation and compressor rings, in which high-

intensity 1-3 ns long proton bunches are formed; 

• (iii) a liquid mercury target for converting the proton beam into a 

tertiary muon beam with energy of about 200 MeV; 

• (iv) a multi-stage ionization cooling section that reduces the 

transverse and longitudinal emittances and, thereby, creates a low 

emittance beam; 

• (v) a multistage acceleration (initial and main) system --- the latter 

employing a series recirculating rapid cycling synchrotrons (RCS) to 

accelerate muons in a modest number of turns up to 3-7 TeV using 

high gradient superconducting RF cavities; 

• (vi) about 8.5 km diameter collider ring located some 100 m 

underground, where counter-propagating muon beams are stored 

and collide over the roughly 1000--2000 turns corresponding to the 

muon lifetime. * From the point of beam physics, complexity of a Muon Collider is 

closer to that of the Tevatron (higher) than to that of the LHC (lower)



Muon Production: 1-4 MW proton driver needed
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see lectures by J.Eldred
and D.Neuffer Tue  



MERIT Experiment – Demo of 4-8 MW Proton Targetry

• At CERN PS

• 1e13 protons 24 

GeV (115kJ/pulse)

• Liquid Mercury 

target 20 m/s

• 15 T Solenoid

MuColl'25 | Colliders VS156 Measured disruption length = 28 cmsee R.Zwaska lecture Wed  



The Need for Muon Cooling

Muon Phase Space After Target 

  vs What’s Needed for Collider
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x

x'

y

y'

t

dP/P

Need “6D-Cooling”



Fast Cooling of Muon Beams
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• The desired 6D emittance for a MC is 5-6 orders of magnitude less from 
the emittance of the beam at the target

• How that can be done before muons decay? → ionization cooling: 

ionization loss along momentum followed by RF acceleration (restore 
energy) along longitudinal axis only (like in the Synchr Rad damping)

• Requires rf cavities to compensate for 
lost longitudinal energy

• Use strong B-fields to confine beams

see K.Yonehara lecture Tue  



Equation: 
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• (1st) Cooling term ~ 

(dE/ds) – larger the 

better

• (2nd) Heating/ 

scattering term ~ beta-

function at the 

absorber and 

1/radiation length of 

the material (a low-Z 

preferred,  Liquid 

Hydrogen, Li, LiH, Be)

• Energy of muons



Longitudinal DoF: rms E spread
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fluctuations of ionization 
energy losses

cooling term

• Cooling requires that d(dEμ/ds)/dEμ > 0. But at energies below about 200 MeV, the energy 
loss function for muons, dEμ/ds, is decreasing with energy and there is thus heating of the 
beam. Above 400 MeV the energy loss function increases gently, thus giving some cooling, 
though not sufficient for fast cooling application (see previous slide).

• The “struggling” term 

increases as γ^2, and the cooling system size scales as γ → cooling at low energies is desired.

• Energy spread can also be reduced by artificially increasing d(dEμ/ds)/dEμ by placing a 
transverse variation in absorber density or thickness at a location where position is energy 
dependent, i.e. where there is dispersion (= emittance exchange long→ transverse)



MICE: Muon Ionization Cooling Experiment = 1 “cell”

MuColl'25 | Colliders VS161

ISIS 800 MeV
proton 
synchrotron 
@ RAL (UK)



62

Muon 4D Cooling: MICE Results (2024)

Fig. 3 | Transverse emittance change measured by MICE. Emittance change between the TKU and TKD 
reference planes, Δε⊥, as a function of emittance at TKU for 140 MeV/c beams crossing the LH2 MICE 
absorbers. Results for the empty cases, namely, No absorber and Empty LH2, are also shown. The 
measured effect is shown in blue, whereas the simulation is shown in red. The corresponding 
semitransparent bands represent the estimated total standard error. The error bars indicate the statistical 
error and for some of the points, they are smaller than the markers. The solid lines represent the 
approximate theoretical model defined by equation (10) (Methods for the absorber (light blue) and empty 
(light pink) cases. The dashed grey horizontal lines indicate a scenario where no emittance change occurs. 
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6D Ionization Cooling

MuColl'25 | Colliders VS163

• Initial beam is narrow with some momentum spread
• Low transverse emittance and high longitudinal emittance

• Beam follows curved trajectory in dipole
• Higher momentum particles have higher radius trajectory
• Beam leaves wider with energy-position correlation

• Beam goes through wedge shaped absorber
• Beam leaves wider without energy-position correlation
• High transverse emittance and low longitudinal emittance

• (Do transverse 4D cooling… and repeat the cycle)



Rectilinear Ionization Cooling Channel
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6D emittance reduction by 5 

orders of magnitude 

(between point 2 to 5). 
Length ~ 900 m

Final cooling section design requires 
~30 T solenoids (point 5 to 6)



Full Ionization Cooling & Demonstrator

65

▪ MC ionization cooling channel consists of ~800 muon 
cooling cells

▪ The cooling of muons requires very compact assembly 
of normal conducting RF cavities, superconducting 
solenoids, and either liquid hydrogen or LiH absorbers

▪ Large bore solenoids: from 2 T (D=1 m) to 20+ T 
(D=0.05 m)

▪ RF cavities (300-800 MHz) must operate in multi-Tesla 
fields

▪ Wedge-shaped  absorbers must and large muon beam 
intensities

Schematic of the muon cooling demonstrator

https://doi.org/10.1140/epjc/s10052-023-11889-x

Muon mom. 

MeV/c

Total 

length, m

Total # of 

cells

Total RF 

voltage, MV 
B_max, T

6D emm. 

reduction 

Beam 

loss, %

Full scale MC 200 ~980 ~820 ~15,000 2-14 x 1/105 ~70%

Demonstrator 200 48 24 ~260 0.5-7 x 1/2 4-6%

The Muon Ionization Cooling Demonstrator Experiment: 

■  Timeline: 2029-2034 ■ Location: Fermilab or CERN  ■  Cost: 300 ? M$

MuColl'25 | Colliders VS1 see D.Stratakis lecture Wed  



Acceleration and Collider Ring ~75% of the MC Cost

Options (high→ low cost):

• Linac (very costly!)

• Recirculating linear 

accelerator (RLA)

• Fixed field alternating 

gradient (FFA)

• Pulsed synchrotrons

MuColl'25 | Colliders VS166

~14T Large Aperture
Collider Magnets

Alexahin et al 2018 JINST 13 P11002

CBETA FFA at Cornell/BNL            arXiv1706.04245

http://arxiv.org/abs/1706.04245


The Idea of Pulsed Muon RCS
• Rapid cycling synchrotron (RCS)

– Potentially larger acceleration range at affordable cost

– Could use combination of static superconducting and ramping normal-
conducting or HTS  magnets

– But have to deal with energy in fast pulsing magnets

• Of course, circumference of the RCS will be larger than that of collider as 
AVERAGE max B-field in RCS < AVERAGE (static) B-field collider ring
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Need pulsed magnets dB/dt ~1000T/s
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Approach to an economical magnet 
is to use HTS tape: very low AC losses 
in superconductor

Fermilab, 2021



Neutrino Flux (Muons decay to e+ν ν  )
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Collider Ring design - see lecture of E.Gianfelice-
Wendt on Wed  



Neutrino Radiation Dose & Control
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<1 mSv/yr mitigation ideas: 
• depth 
• few mm vertical collider 

orbit variation (next slide)
• few cm magnet positions 

float (next slide)
• less muons… =smaller 

emittance to keep L

Cone gets narrower with energy
Cross section grows with energy  

~ 1 m



Approx. % 

of the Total 

Cost

Approx. 

Luminosity 

Risk Factor

Proton Driver & Targetry 15 - 20 % 10 1 - 2

Muon Cooling 10 - 15 % 10 3 – 4

Acceleration 30 - 60 % 10 1 – 2

Collider 25 - 40 % 10 0 – 1

TOTAL 12 - 18 B$

   *ITF?

10 5 - 9

71

On Required R&D: μ-Coll Costs and Risks
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1 TeV 10 TeV 100 TeV

10 ab-1/yr

1 ab-1/yr

0.1 ab-1/yr

0.01 ab-1/yr

1 fb-1/yr

Ultimate Colliders Luminosity vs Energy

Parton CME

μ+μ− Circular

pp Circular

V.Shiltsev, “Ultimate Colliders” (Oxford Encyclopedia, 2023); 

DOI: 10.1093/acrefore/9780190871994.013.118

e+e,−μ+μ− Linear

10 PeV

Main Limits:

Power… 3 
TWh/yr
Cost….. 3 xLHC

1 PeV

Tevatron

LHC

pp circ.
μμ circ.

linear lepton 
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Questions !?

73



Literature 

• V.Shiltsev, F.Zimmermann,  Modern and Future Colliders (Rev.Mod.Phys., 2021)

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.93.015006 

  

• V.Lebedev, V.Shiltsev, Tevatron Book

https://indico.cern.ch/event/774280/attachments/1758668/2915590/2014_Book_Accel

eratorPhysicsAtTheTevatro.pdf 

74 MuColl'25 | Colliders VS1

W.Herr, CAS school

https://cds.cern.ch/record/941319/files/p379.pdf

Proc. 2013 ICFA mini-workshop on "Beam-Beam Effects in Hadron Colliders" 

https://indico.cern.ch/event/189544/ 

Comprehensive JUAS-book (2371 pages – all topics!)

https://doi.org/10.23730/CYRSP-2024-003. 

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.93.015006
https://indico.cern.ch/event/774280/attachments/1758668/2915590/2014_Book_AcceleratorPhysicsAtTheTevatro.pdf
https://indico.cern.ch/event/774280/attachments/1758668/2915590/2014_Book_AcceleratorPhysicsAtTheTevatro.pdf
https://cds.cern.ch/record/941319/files/p379.pdf
https://indico.cern.ch/event/189544/
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.23730_CYRSP-2D2024-2D003&d=DwMGaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=99GqOH5YbxhUv7rqezft6w&m=BEC-fT8Q-VQYNBkDprSzl1zEk9L_L59POtlRoQ-JfTIfsIKw0wnK1skqBLUUD9xB&s=4fAN9XVA6G27kbSOAvYAdhUMF7_UGvTNoWI0uxKp1Bk&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.23730_CYRSP-2D2024-2D003&d=DwMGaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=99GqOH5YbxhUv7rqezft6w&m=BEC-fT8Q-VQYNBkDprSzl1zEk9L_L59POtlRoQ-JfTIfsIKw0wnK1skqBLUUD9xB&s=4fAN9XVA6G27kbSOAvYAdhUMF7_UGvTNoWI0uxKp1Bk&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.23730_CYRSP-2D2024-2D003&d=DwMGaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=99GqOH5YbxhUv7rqezft6w&m=BEC-fT8Q-VQYNBkDprSzl1zEk9L_L59POtlRoQ-JfTIfsIKw0wnK1skqBLUUD9xB&s=4fAN9XVA6G27kbSOAvYAdhUMF7_UGvTNoWI0uxKp1Bk&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.23730_CYRSP-2D2024-2D003&d=DwMGaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=99GqOH5YbxhUv7rqezft6w&m=BEC-fT8Q-VQYNBkDprSzl1zEk9L_L59POtlRoQ-JfTIfsIKw0wnK1skqBLUUD9xB&s=4fAN9XVA6G27kbSOAvYAdhUMF7_UGvTNoWI0uxKp1Bk&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.23730_CYRSP-2D2024-2D003&d=DwMGaQ&c=gRgGjJ3BkIsb5y6s49QqsA&r=99GqOH5YbxhUv7rqezft6w&m=BEC-fT8Q-VQYNBkDprSzl1zEk9L_L59POtlRoQ-JfTIfsIKw0wnK1skqBLUUD9xB&s=4fAN9XVA6G27kbSOAvYAdhUMF7_UGvTNoWI0uxKp1Bk&e=
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ENERGY: Brute Force Approaches

Particle Energy Increase 

ΔE = Electric Field Gradient x Length

  

#1    Increase length = linac
              (linear accelerator)  

#2    Accelerate in a ring (Nturns ΔE) 
increase circumference as E=0.3BR

     (synchrotrons)  



CCC=CERN Control Center
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Over 100,000 signals are generated by the cryogenics, 

machine protection and beam monitoring systems.  



Further Reading on 

Accelerator Physics

• An Introduction to Particle Physics High 

Energy Accelerators, D. Edwards and M. 

Syphers  (John Wileyand Sons, Inc, 

1993) 

• Accelerator Physics, S.Y. Lee (World 

Scientific, 1999) 

• Hand Book of Accelerator Physics and 

Engineering – Eds. A. Chao and M. 

Tinger , World Scientific (1999) 

• CAS CERN Accelerator, Accelerator 

Physics Courses http://cas.web.cern.ch/

• Accelerator Physics at the Tevatron 

Collider - by V.Lebedev and V.Shiltsev, 

Springer (2014) 
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http://cas.web.cern.ch/


Luminosity and Burn-Up

The relationship of the 

beam to the rate of 

observed physics 

processes is given by the 

“Luminosity”

Rate

Cross-section 

(“physics”)“Luminosity”

Standard unit for Luminosity is cm-2s-1

LR =

Example: total p-p inelastic+elastic cross section at 13 TeV 
cme is ~110 mbarn (58 inel+ 12 ssd+40 el not seen)→
~60 interactions per crossing x 
40,000,000 collision/sec= 2.4e9 protons leave each beam 
every second
Beam lifetime due to such “Burn up”  T=N/(dN/dt)= 
 2.8e14 protons/(2.4e9/s) =32 hours 
78



❑ 26 658.883 m

❑ 6.5 TeV x 2 
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Image courtesy John Jowett
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σ’=32μrad

σ’=0.14μrad

Ɛn = 1.8 mm·mrad



Luminosity Lifetime and Integral

82

2x(1/32+1/32 + 1/110) hrs-1

=14%/hr (7 hrs lifetime)

Take into account two IPs (ATLAS, CMS and 3% LHCb) 1/32+1/32 hrs-1

Take into account beam gas 1/110hrs-1  and that Lumi~N^2 → x2



(Very) Brief History of Colliders

• Notable machines and most notable 

effects/discoveries/breakthroughs

• Note that we later will consider in detail: 

– LEP, KEK-B and Super-KEKB (lecture VS6)

– Tevatron (lecture VS7)

– LHC and HL-LHC  (lecture VS8)

– RHIC and EIC (lecture VS9)

– SLC and linear colliders (lecture VS12)
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Collider Patent R.Wideroe Sept. 8, 1943
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First Colliders
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AdA (Frascati/Orsay)

e+e- 500 MeV, ~May1964

VEP-1 (Novosibirsk)

e-e- 320 MeV, May 19, 1964

CBX (Stanford/Princeton)

e+e- 1050 MeV, ~Mar1965



The First “Trio” of Colliders

• Technological challenges addressed: 

– development of nano-second-fast injector kickers

– attainment of an ultrahigh vacuum of about a micropascal or better

– reliable luminosity monitoring and other beam diagnostics

• Beam physics advances: 

– Touschek effect (low energy beam losses due to particle scattering 

inside beam leading to e+e- gettinbg out of RF buckets)

– luminosity degradation due to beam-beam effects at ξx;y ∼ 0.02–0.04

– complex beam dynamics at non-linear high-order resonances 

– coherent instabilities due to resistive vacuum pipe walls

MuColl'25 | Colliders VS186



1970s-80s “small” e+e-  (C=20…200 m)
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ADONE (INFN, Frascati) SPEAR (SLAC, Stanford)

DORIS (DESY, Hamburg)VEPP-2 (INP, Novosibirsk)



1970s-80s “small” e+e-

• Technological challenges addressed: 

– longitudinal phase feedback system developed and installed (ADONE)

– 7.5 T SC wiggler to decrease the damping time (VEPP-2M)

• Beam physics advances: 
– Luminosity scaling in SR dominated beams                 (ADONE)

– Sokolov-Ternov effect: the buildup of electron spin polarization 

through synchrotroton radiation (VEPP-2 and ACO)

– CEA: first time a low-beta insertion optics with a small βy ≈ 2.5 cm

– SPEAR: Transverse horizontal and vertical head-tail instabilities

were observed and suppressed a positive chromaticity Q’>0

– DCI: first four-beam compensation attempt (limited success)

– dE/E~10-5 resolution via resonant depolarization method (VEPP-2M)

– Multibunch, e.g. 480 bunches in each ring in DORIS
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1980s-90s “large” e+e- (C=2…27 km)
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PETRA (DESY, Hamburg) SLC (SLAC, Stanford)

LEP (CERN)TRSITAN (KEK, Japan)



1980s-90s “large” e+e-

• Technological challenges addressed: 

– SLC: first ever (and only) linear collider – many subsystems

– pioneer SRF technology - TRISTAN: 508 MHz 0.4 GV/turn; LEP 352 

MHz SC niobium-on-copper cavities, 3.5 GV/turn

– High current positron sources, incl. 80% polarized e- (SLC)

• Beam physics advances: 

– LEP: losses via e+/e- scattering off thermal photons in RT beampipe

– LEP single-bunch current limited by TMCI at injection energy

– LEP: beam-beam record tune shift 4xξy=0.33 

– SLC : BNS (Balakin-Novokhatsky-Smirnov) damping of BBI

– SLC: ~x2 increase of luminosity due to disruption enhancement @IP
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2000s-now “factories” e+e- (Φ-, Charm-, B-meson)
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KEK-B → SuperKEKB (KEK, Japan)

CESR (Cornell)

BEPC (Beijing)

DAΦNE (INFN, Frascati)

VEPP-2000 (BINP, Novosibirsk)



2000s-now “factories” e+e-

• Technological challenges addressed: 

– HV electrostatic orbit separation for e+e- (CESR)

– Efficient SRF for Ampere-class currents, HOM damping

– Asymmetric rings – KEK-B, PEP-II, Super-KEKB

– Tight detector background control - vacuum and collimation

– Since PEP-II/KEKB: top-up injection mode of operation

• Beam physics advances: 

– Advanced optics for tight vertical focusing with βy ~1cm – few mm

– VEPP2000 : “round beams” concept ξ ∼ 0.25

– (less successful) CESR “Moebius ring” collider scheme (x-y flips)

– DAΦNE : “crab waist” focusing optics, demo “wire b-b compensation”

– KEK-B: crab crossing (limited success) → nonobeams (Super-KEKB)
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1970s-2010s Hadron Colliders (C=1…7 km)
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Tevatron (FNAL, Batavia)

SPPS (CERN)

HERA (DESY, Hamburg)

ISR (CERN)



1970s-2000’s Hadron Colliders (1)
• Technological challenges addressed: 

– ISR: world’s first pp collider (and pp Lumi record holder for >20 yrs)

– SC NbTi magnets 4-8 T (Tevatron → HERA→ RHIC → LHC)

– SPPS, &Tevatron: technology of antiproton production & scienc of 

stochastic (Nobel prize) and electron cooling (up to 4 MeV e-) 

– Tevatron:  permanent magnets (3.3 km 8 GeV Recycler)

– Two-stage collimation systems (HERA, Tevatron)

• Beam physics advances: 

– Longitudinal manipulations : momentum stacking (ISR), slip-stacking 

and momentum mining (Tevatron)

– Tevatron: beam-beam record at ξx;y ∼ 0.025, first successful demo b-b 

compensation by electron lenses, hollow e-lens collimation

– HERA: first e-p collider, transversely polarized e- & spin rotators to l
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2000s-now Hadron Colliders (C=4…27 km)
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RHIC (BNL, Brookhaven) LHC (CERN)



2000s-now Hadron Colliders (2)

• Technological challenges addressed: 

– First use of Nb3Sn SC magnets (HL-LHC)

– Three (4) stage 99.99% efficient collimation system (LHC)

– Ions sources and ion-ion, ion-p collisions (RHIC, LHC)

– Sophisticated polarization control along the chain (55% in RHIC)

• Beam physics advances: 

– RHIC: bunched beam stochastic cooling, bunched beam electron 

cooling 

– RHIC: head-on beam-beam compensation with electron lenses

– LHC: sophisticated control of electron-cloud and other instabilities

– LHC: novel achromatic telescopic squeeze optics to lower beta*

– LHC: demo wire compensation of long-range beam-beam effects
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Super-Colliders That Were Not (1990’s)
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SSC (Waxahachie, TX) UNK (IHEP, Protvino)



Colliders That Will Be
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BINP C/Tau-Factory 
(Novosibirsk)

NICA (JINR, Dubna) EIC (BNL, Brookhaven)



Colliders That Might Be :
 

Higgs factories proposals
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CepC/FCCee
100 km

CLIC NCRF 72 MV/m
11 km

ILC SRF 31.5 MV/m
21 km

100MW RF



Far-Future High Energy Collider Concepts/Proposals
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μ+μ- 10-14 TeV cme
10-14 km, 16 T magnets

CLIC e+e- 3 TeV, 100 MV/m 50 km

pp 100 km : SPPC  75 TeV, 12 T magnets, FCChh 100/16 T



Luminosity Demand : Leptons
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need L ~ s ~ E2



Hadron Cross Sections – Inclusive vs Parton
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