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Fermilab Makes Neutrinos and Muons
• Particle accelerators provide the raw material in terms of the kinetic energy stored in 

the high-power beams

• Target Stations convert the kinetic energy into new fundamental particles that are the 
subject of experiments

– We do this by building devices (targets) that provide reaction material for the matter-creating 
collisions, focusing devices to maximize the intensities of our beams, and the numerous 
additional devices and system to manage these beams

• This talk: example of making a neutrino beam:
– Interest in neutrinos
– The accelerators provide the raw energy
– The target converts the energy to new matter
– The beamline defines the beam towards detectors
– Neutrinos go forward (inexorably)

• A little of the challenges of neutrino beams

• Neutrino beams around the world

• An introduction to high-power targetry
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The First Neutrino “Beam”
• In 1957, Brookhaven AGS and 

CERN PS first accelerators intense 
enough to make ν beam

p + Be → π+ + X,     π+ → µ+ ν
• 1962:  Lederman, Steinberger, 

Swartz propose experiment to see
νµ + N→ µ− + X (Phys.Rev.Lett. 9, 36 (1962))

ν

ν

νe + N→ e− + X

νµ + N→ µ− + X

Saw lots of…

Saw none of…
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The NuMI Facility
“Neutrinos (ν –> Nu) at the Main Injector”

• Intense muon-neutrino beam directed 
towards Minnesota

• Main Injector supplies 25 – 50
trillion 120GeV protons every 
1.4 seconds
– Operating regularly above 900 kW

• Each pulse produces about 2x1014 ν µ
– ~ 20,000,000 Pulses per year

• Direct beam 3o down
• On-site and off-site experiments
• Different types of neutrino beams
• Beam is 10s of kilometers wide at exit

Near Detector: 980 tons Far Detector: 5400 tons

5

“Long-baseline”
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Multiple Experiments in the NuMI Beam
Long-baseline oscillation experiments Neutrino scattering experiments 
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Pion Decay!

• Most all of our neutrinos come from pion decays

• Two quarks, bound together by gluons, convert into a neutrino and muon

• A “simple” decay (at first) 
– Pion mass ~ 140 MeV/c2, Muon mass ~ 105 MeV/c2

µνµπ ++ →
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The NuMI Beam  “Neutrinos at the Main Injector”

• 400 kW design average power
• 700 kW upgrade for NOvA
• 1 Megawatt Upgrade 2021
•  σ ∼ 1 mm

• 1 meter long, C target
• Produces π+, K+ mesons

• Pulsed focusing horns
• Toroidal magnetic field
• Parabolic inner conductor profile
• Focus meson momentum band

• 2 m diameter
• Roughly decay length for 10 GeV π+

• He-filled

• Absorbs ~ 40 % of beam power
• Allows high-energy muons to 

penetrate

• Measure hadron & muon fluxes
• Arrays measure distributions
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The MINOS Target

Water cooled
 graphite core

Encased in
 vacuum / helium can
 with beryllium windows

~ 4 kW beam power
         deposited in target
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Target Issues
• Common failure mode was water 

cooling
– Also, an issue for horns
– Many lessons were learned in design 

and in quality control
• NOvA target is more robust in its 

design
– Made possible by being outside of the 

horn.
– LBNF Design returns to inside the horn

• Graphite degradation was observed 
on one target

– May ultimately limit the performance of 
the target
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NOvA Target

IHEP Protvino (Russia) initial 
design

STFC-RAL / FNAL final design 
and construction

• Graphite fins: 50 x 24 mm; 7.4 – 
9.0 mm wide

• Helium atmosphere
• Beryllium windows
• Water cooled aluminum pressing 

plates
• Water cooled outer vessel
• Initially designed for 700 kW, now 

upgraded to 1 MW
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Challenging 
Environments

• Replaced NuMI Horn summer 
2015 due to failed stripline
– First 700 kW capable horn, 

in service since Sept. 2013, 
accumulated ~ 27 million 
pulses

• Failure was due to fatigue, 
likely enhance by vibrations
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• Conventional “horn-magnet-focused” ν beam
– 30GeV Protons on a graphite target
– daughter π+   µ++νµ  (π-   µ-+νµ )
– Anti-neutrino production by inverse polarity

• First application of Off-Axis(OA) beam: 2.0~2.5o wrt. 
the far detector direction

– Low-energy narrow-band beam
– peak tuned to oscillation maximum
– Small high-energy tail: reduce inelastic bkgs

The T2K experiment      

pπν

120m 0m280m295 km

off-axis

muon-monitorNear 
detectors

Decay 
volume

Oscillation 
Maximum 
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Booster Neutrino Beam (BNB)

• Uses 8 GeV beam from the Fermilab Booster, operating since 
2002
– Up to ~ 30 kW of beam (5e12 ppp)

• Beryllium target integrated with single focusing horn
• Services a suite of experiments at Fermilab: the Short Baseline 

Neutrino (SBN) program
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DUNE: Deep Underground Neutrino Experiment
LBNF: Long-Baseline Neutrino Facility
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Timeline of High-Power Target Stations at Fermilab

Station Design Power Period Comments

BNB 30 kW 2002 – 2027 (?)

NuMI 700 kW – 1 MW 2004 – 2027 Megawatt Upgrade in progress.

AP-0 / Muon g-2 20 kW 2017 – 2023 (?) Using legacy targets & lenses 
from Antiproton Source.

Mu2e 8 kW 2027 (?) - Very challenging high-Z, 
radiatively cooled target, even 
with low power. 

LBNF/DUNE 1.2 MW 2031 (?) - Challenging, but achievable 
devices.  Rate of production 
may be greatest challenge.

• Three operating stations, two in various stages of design & construction
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What we don’t want
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Timeline of High-Power Target Stations

Station Design Power Period Comments

BNB 30 kW 2002 – 2027 (?)

NuMI 700 kW – 1 MW 2004 – 2027 Megawatt Upgrade in progress.

AP-0 / Muon g-2 20 kW 2017 – 2023 (?) Using legacy targets & lenses 
from Antiproton Source.

Mu2e 8 kW 2027 (?) - Very challenging high-Z, 
radiatively cooled target, even 
with low power. 

Mu2e-II 100 kW 2030s (?) - “Impossible” Target

LBNF/DUNE 1.2 MW 2031 (?) - Challenging, but achievable 
devices.  Rate of production 
may be greatest challenge.

LBNF w/ ACE-
MIRT

2+ MW 2034 (?) - Challenging
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PIP-II + Possibilities
Numbers are examples, not official

• PIP-II itself is a blowtorch of 
an accelerator
– Capable of 2 mA CW @ 

800 MeV -> 1.6 MW
– One could reasonably 

expect experiments with 
that beam…

• Future accelerators adds 
even more
– Linac option of 8 GeV?

• 16 Megawatt beam
– Linac + RCS

• 4 MW @ 2 GeV
• 700 kW @ 8 GeV

PIP-II

PIP-III

Pres
ent

PIP-
II

New 
RCS

MI
Beam Energy[GeV] 120 120 120
Cycle Time[s] 1.33 1.2 1.45
Protons per pulse[1e12] 49 75 190
Power[MW] 0.7 1.2 2.5

Proton Source
Injection Energy[GeV] 0.4 0.8 0.8-2.0
Extraction Energy[GeV] 8 8 8
Protons per Pulse[1e12] 4.3 6.4 32
Beam Power to MI [kW] 38 82 168
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Timeline of High-Power Target Stations

Stations Design Power Period Comments

BNB 30 kW 2002 – 2027 (?)

NuMI 700 kW – 1 MW 2004 – 2027 Megawatt Upgrade in progress.

AP-0 / Muon g-2 20 kW 2017 – 2023 (?) Using legacy targets & lenses 
from Antiproton Source.

Mu2e 8 kW 2027 (?) - Very challenging high-Z, 
radiatively cooled target, even 
with low power. 

Mu2e-II 100 kW 2030s (?) - “Impossible” Target

LBNF/DUNE 1.2 MW 2031 (?) - Challenging, but achievable 
devices.  Rate of production 
may be greatest challenge.

LBNF w/ ACE-MIRT 2.5 MW 2034 (?) - Challenging

800 MeV Exp’t(s) 1.6 MW 2030s (?) - 

2 GeV Exp’t(s) 4 MW 2030s (?) - 

8 GeV Exp’t(s) 0.8 – 16 MW 2030s (?) -
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High Power/Intensity Targetry Challenges
• Target Material Behavior

– Radiation damage
– Thermal “shock” response
– Highly non-linear thermo-

mechanical simulation
• Targetry Technologies (System 

Behavior)
– Remote handling
– Target system simulation 

(optimize for physics & longevity)
– Rapid heat removal
– Radiation protection
– Radiation accelerated corrosion
– Manufacturing technologies

Additional Neutrino Beam Challenges:

• Primary beam handling and 
instrumentation

• Accuracy and consistency of all beam 
inputs, particularly alignment

• Focusing elements
• Beam-based alignment
• Secondary beam instrumentation
• Radiation transport modeling
• Hadron production

The high statistics from high-power beams require an emphasis on precision
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Uncharted Territory
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Multi-MW Neutrino Targets & Beam Windows Materials: 
• Graphite (target core material) studies:

– Swelling/fracture studies
– Preparing for HE proton irradiation at BLIP (2020) to 

confirm elevated temperature annealing
• Beryllium (beam window material) studies:

– Examination of BLIP irradiated Be specimens 
underway

– Helium implantation studies show bubble formation at 
irradiation temperatures above 360 ˚C

• Titanium Alloys (beam window material) studies:
– Examination of BLIP irradiated specimens underway
– World first high cycle fatigue testing of 

irradiated titanium underway at FNAL

High Power Targetry: Materials R&D
Benefits to multi-MW 
targets e.g. LBNF):
• alloy/grade choice
• cooling system 

design
• tolerable beam 

intensities
• expected lifetimes

R a D I A T E

In-beam thermal shock 
testing of BLIP irradiated 
Be and Ti alloys at CERN
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Radiation Damage In Accelerator Target Environments 

R a D I A T E
Collaboration

Broad aims are threefold:

 to generate new and useful materials data for application within the accelerator 
and fission/fusion communities

 to recruit and develop new scientific and engineering experts who can cross the 
boundaries between these communities

 to initiate and coordinate a continuing synergy between research in these 
communities, benefitting both proton accelerator applications in science and 
industry and carbon-free energy technologies

www-radiate.fnal.gov
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From D. Filges, F. Goldenbaum, in:, Handb. Spallation Res., 
Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–61. 

Microstructural response: 
• creation of transmutation products;
• atomic displacements (cascades)

• average number of stable interstitial/vacancy 
pairs created = DPA (Displacements Per 
Atom)

• Gas production (hydrogen / helium)

Radiation Damage Disorders Microstructure

Slide prepared by V. Kuksenko (Oxford)



25 R. Zwaska | Target Technology 2025.08.06

RaDIATE BLIP irradiation summary

2018
Phase 1 Phase 2 Phase 3

Total µA-hr 32464.49 45614.58 124979.89 203058.96
Total hr 226.27 302.94 789.09 1318.30
Total days 9.43 12.62 32.88 54.93
Total weeks 1.35 1.80 4.70 7.85
Avg. current (µA) 143.48 150.57 158.38 154.03
POT 7.30E+20 1.03E+21 2.81E+21 4.57E+21

2017 Total

• 181 MeV incoming protons used for RaDIATE irradiation
• Irradiation campaign executed in 3 phases with different target box configurations

• 6 capsules in target box during each irradiation phase

• Total protons on target: 4.57E21 (154 µA avg)

Consisted of 9 capsules from 6 RaDIATE institutions with over 200 material specimens 
relevant to beam intercepting devices in various current/future accelerator facilities
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BLIP Irradiation Examinations
• Significant hardening at low dose in Be and Ti

• Less hardening in higher temperature specimens
• First ever fatigue study on irradiated Ti alloys begun

• Indicates about 10% reduction in fatigue strength
• Microstructural examinations

Irradiation hardening of S-65F Be
• Reduction of strain to failure
• Increased strength

Custom Fatigue Testing Machine for 
Irradiated Materials (FNAL)
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X-ray diffraction – Swelling in BLIP irradiated graphite 

W. Bollmann. “Electron-microscopic observations on radiation damage in 
graphite” Phil. Mag., 5(54):621-624, June 1960. 

Simos et al

Impact:  Allows confidence to use 
reactor data for lattice swelling of 
graphite in HE proton regime for 
future target facilities
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• B.J. Marsden, “Irradiation Damage in Graphite due to fast neutrons in fission 
and fusion systems,” IAEA-TECDOC-1154, 2000 

Neutron irradiated graphite dimensional changes

Big change 
in c-axis 
growth 
~250 ˚C

Impact:  Correlation informs 
target choice of operating 
temperature (cooling system 
design)
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In-Beam Thermal Shock Test: BeGrid2 (HRMT43)

Primary Objectives:
• Compare thermal shock response between non-

irradiated and previously irradiated material 
specimens from BNL BLIP (Be, C, Ti, Si) 

• First/unique test with activated materials at HiRadMat

• Explore novel materials such as metal foams (C, 
SiC) and electrospun fiber mats (Al2O3, ZrO2) to 
evaluate their resistance to thermal shock and 
suitability as target materials

SEM: as-spun Al2O3Electrospinning concept
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BeGrid2 (HRMT43) – 3-D printed specimen holders
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MIMiC - Methods of Irradiated Material Characterization 

The current routes for high-energy proton irradiations are expensive, long in 
duration, and lack control of testing conditions and schedule. 

• Low-energy ion irradiations are 
attractive because they allow study of the 
evolution of the micro-structure during 
irradiation without activating the 
specimens, are relatively low cost, and 
can achieve high dose in very short 
durations.

• Micro-mechanics and meso-scale 
testing are potential enabling 
technologies to overcome some of the 
limitations of low-energy irradiations as 
well as to drastically reduce specimen 
size requirements (which also reduces 
activity of specimens).

• Ion irradiations and micro-mechanics 
have been used in the RaDIATE 
studies on beryllium.

Replicating proton beam interaction damage with minimal residual activity 
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Uncharted Territory
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A few notes for Muon Collider Targets
• Most comparable configuration is Mu2e – challenging at 8 kW @ 8 GeV.  

– Extrapolation to Mu2e-II (100 kW @ 1 GeV) has no present solution
– Cannot Extrapolate to historical Muon Collider (4 MW @ few GeV) 

• Higher proton beam energy is better for the target (less power deposited in 
target for the same beam power)

• Separating target from optics is very beneficial
– Has the capacity to allow rotation and more robust support systems
– Can more forward production from higher-energy protons be used?

• Muon collider requirements on precision may be less strict

• Machine Protection is vitally important at high power.  Targets and facilities 
must have this built in from the beginning. 

• Attempt to avoid liquid targets.  Enormous investment and R&D, many risks.  
SNS, ESS, J-PARC have all decided against liquid targets for new target 
stations
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Summary

• There is broad experience in targets at Fermilab and 
elsewhere.

• Targets are challenging and can be the performance-limiting 
factor of a facility

• There is active development of new targets, and an active 
R&D program

• Muon Collider targets are beyond state-of-the-art; the facility 
could benefit from choices that allow more buildable targets
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