How to Simulate a Muon Collider Detector?

Ben Rosser

University of Chicago

August 8, 2025

Introduction

- Good question!
 - Only a handful of experts producing samples with beam induced background (BIB) overlay.
 - We're able to perform studies, but many areas for **potential improvement**.
- ullet Samples with full BIB being used to study $10\,\mathrm{TeV}$ MAIA detector (2502.00181).
- This talk: how were those samples produced?
 - Will walk through steps to run on MAIA geometry with latest software.
 - Will discuss how BIB is simulated and overlaid.
 - Will discuss some current problems and limitations with the simulation chain.
 - Focus is on MAIA, mostly applies to MUSIC detector studies as well!

MAIA Detector Studies

- MAIA performance evaluated using single particle samples:
 - Muons for the tracker: flat in p_T .
 - Photons the ECal: flat in E.
 - Neutrons for the HCal: flat in E.
 - Uniformly distributed in $0<\phi<2\pi$, $8^{\circ}<\theta<172^{\circ}$.
 - BIB overlaid during digitization.
 - Reconstruction using key4hep-based MuonColliderSoft framework.
- Starting to look at more objects:
 - Electrons, pions, taus, dijets.
 - See Simone's plenary, parallel talks from Gregory and Rose yesterday for more details on latest studies.

Software Tutorial

- Have run tutorials in the past, including at USMCC last year:
 - Still available at https://mcd-wiki.web.cern.ch/software/tutorials/fermilab2024
 - Walks through setup, MC generation, simulation, digitization, reconstruction, analysis.
 - Uses 3 TeV detector geometry. This talk contains updated instructions for MAIA!

"I thought it was pretty good. Most of the software tutorials I try out crash. This one didn't.

You can run things and they work!"

– Gregory Penn (Yale)

 Ben Rosser (Chicago)
 USMCC 2025
 August 8, 2025
 4 / 14

Software Framework

- Muon Collider software:
 - Originally based on ILCSoft, now being migrated to key4hep.
 - Reconstruction being migrated from Marlin to Gaudi; output format from LCIO to edm4hep.
 - At **present**: most algorithms still Marlin based; storing **LCIO output** from reco.
- Software can be built via spack, distributed via (docker/apptainer) containers.
 - Building Ubuntu and Alma 9 images automatically on github, replicating to cvmfs.
 - No major release since last summer, working to include MAIA/MUSIC. v2.9.7 newest image.

 Ben Rosser (Chicago)
 USMCC 2025
 August 8, 2025
 5 / 14

Simulation with DD4hep

- Detector description needed to run sim:
 - DD4Hep provides generic XML format for detector geometries.
 - Many future collider detector geometries collected in k4geo repository, now including MAIA!
 - Geometry read in via dd4hep; used in both simulation and reconstruction.
 - Also used to make simple event displays via CEDViewer.
- DD4Hep includes ddsim wrapper around GEANT4 used to run simulation:
 - Can run over LCIO/hepmc input files.
 - Must run using Python steering file and point at geometry description.

```
<1ccdd>
  <info name="MAIA v0"</pre>
        title="MAIA detector concept for sqrt(s)
              = 10 TeV muon collisions"
        author="Federico Meloni"
        url="https://mcdwiki.docs.cern.ch/"
        status="development"
        version="0">
        <comment>First import</comment>
  </info>
  <include ref="Vertex o2 v06 01.xml"/>
  <include ref="InnerTracker o2 v06 01.xml"/>
  <include ref="OuterTracker o2 v06 01.xml"/>
  . . .
</1ccdd>
```

MAIA_v0.xml

Digitization and BIB Overlay

- Simple digitization: applies resolutions, calorimeter sampling fraction, thresholds.
- BIB overlay process also performed here via **subevent mixing** process:
 - BIB is computationally expensive! Generate **tenths** of bunch crossing (BX) in FLUKA.
 - Build statistically independent pseudo-events from fragments; can use less than 100% of BX.
 - Requires full BIB dataset present when running digitization.

BIB Simulation

- FLUKA simulates particles up to detector volume at the surface of the nozzles:
 - Particle flux entering detector **not** directly equivalent to detector occupancy.
 - Must run GEANT to model interactions inside detector!
- FLUKA binary output can be converted to LCIO and passed through dd4hep:
 - As FLUKA only simulates BX fraction: must define how many times to clone BIB particles.
 - Important to accurately model low-energy BIB neutron interactions; see JP's talk yesterday!

BIB Overlay Challenges

- First round of MAIA studies done with lattice **v0.4**; but **v0.8** now baseline.
- At present with v0.8 we see **order of magnitude** more BIB in the tracker:
 - Significantly increased computational challenge, especially for tracking; see Angira's talk!

Kiley Kennedy (CPAD 2024). Marion Vanwelde

Tracking Detector Layer

Reconstruction

- Reconstruction (and digitization) running via key4hep and Marlin:
 - Single Python steering file for scheduling both steps at once, can perform BIB overlay.
 - Now run by simply invoking k4reco steer_reco.py.
 - Can edit file to enable/disable specific processors or change which collections are saved.
- Key software packages involved in reconstruction include:
 - ACTS for track reconstruction; provide MAIA material map as part of Python configuration.
 See Rocky's talk for more details on track reconstruction!
 - Pandora PFA for particle flow; see Gregory's talk yesterday for more on Pandora and the work necessary to adapt it to a $\mu^+\mu^-$ environment.
- LCIO output can be analyzed using **pyLCIO** or converted to **ROOT ntuples** as preferred.

Coning and Variable Cell Thresholds

- Two custom strategies we adopted so far for reconstruction in a high-BIB environment.
- Only process and keep BIB hits within cone around truth particles:
 - Significantly reduces overhead (RAM, disk) for full BIB overlay.
 - Tracker coning already in software.
 - Similar processor for calorimeters developed in standalone repo.
- Apply variable cell thresholds in BIB-dominated areas of calorimeter:
 - Would like to study time-based calorimeter clustering in the future!
 - Variable thresholds also implemented in separate repository.

Samples on the Open Science Grid

- The OSG has **dedicated** muon collider computing resources. If you want access:
 - ① Create an account on https://www.ci-connect.net/ using your institute affiliation.
 - Request to join the "PATh Collaborations" group.
 - **3** Send a message on the USMCC slack asking for approval.
- Samples used for MAIA studies available on the OSG:
 - /ospool/uc-shared/project/futurecolliders/data/fmeloni/ParticleGuns
 - /ospool/uc-shared/project/futurecolliders/data/fmeloni/DataMuC_MAIA_v0
- BIB from latest lattice version also available for running your own studies:
 - v0.8 (LCIO): .../data/fmeloni/DataMuC_MAIA_v0/v5/BIB10TeV/
 - v0.8 (FLUKA, not simulated): .../data/fmeloni/FLUKA
- Available samples currently described in shared Google spreadsheet:
 - Discussed possibility of setting up rucio for sample management at IMCC annual meeting.
 - Used by ATLAS/CMS for managing datasets; this would be very useful!

 Ben Rosser (Chicago)
 USMCC 2025
 August 8, 2025
 12 / 14

Instructions for Running MAIA

- Currently working to fully integrate MAIA into framework; for the time being:
 - Geometry: https://github.com/madbaron/detector-simulation/tree/KITP_10TeV
 - Steering macros for sim and reco: https://github.com/madbaron/SteeringMacros
 - Variable cell thresholds, calorimeter coning: https://github.com/madbaron/MyBIBUtils
- To run things yourself on OSG or another cluster, you'll need to set up the software:
- \$ apptainer run -B /ospool/uc-shared/project/futurecolliders/data/:/data \
 /cvmfs/unpacked.cern.ch/ghcr.io/muoncollidersoft/mucoll-sim-alma9\:v2.9.7
- \$ setup_mucoll
 - And then, follow these instructions (now on the wiki!) to:
 - Compile the calorimeter coning processor, add to your local environment.
 - Update paths in the steering macros to point at your copy of geometry files.
 - Run ddsim and k4reco to simulate and reconstruct some events!
 - Also working on documenting best practices for **HTCondor batch system** on the OSG:
 - e.g. need to add Pelican to container images for file transfer to/from workers.

Discussion Topics and Conclusion

- Lots of work done on simulations, but many areas where more personpower is needed.
- Some specific areas for involvement include: fast simulation resources and support:
 - Delphes card exists for 3 TeV detector, in development for MUSIC; still needed for MAIA.
 - We also need to provide efficiency/resolution maps and fake rates for BIB.
 - Can do many studies without BIB in the limit of full mitigation at the detector level.
- Closer integration between **detector** and **MDI** would be very useful:
 - Run CI jobs on Github/Gitlab, make occupancy plots, quickly notice impact of MDI changes.
- Very limited documentation available for **Pandora** particle flow:
 - Affects entire key4hep community; effectively have to reverse engineer Pandora algorithms.
 - Implement alternative reconstruction algorithms more tailored to muon collider?
- Need to continue improving documentation, update and run more tutorials.
- Thanks for your attention!

Ben Rosser (Chicago) USMCC 2025 August 8, 2025 14 / 14

Backup