

Machine Learning + Muon Collider Abhijith Gandrakota

(Based on discussions with Sergo. J, Nhan. T, Nick. S and many more)

- Muon collider is an innovative machine with incredible physics potential.
 - Energy reach of hadron collider + Precision of a lepton collider

• What are the expectations?

- Muon collider is an innovative machine with incredible physics potential.
 - Energy reach of hadron collider + Precision of a lepton collider
- What are the expectations?
 - Accelerating muons to high energies ~ 10 TeV with high luminosity
 - Detectors optimized for studying muon collisions
 - Precise reconstruction and identification of all the objects
 - Mitigating beam induced background
 - Read out and store every collision event on tape

- Muon collider is an innovative machine with incredible physics potential.
 - Energy reach of hadron collider + Precision of a lepton collider
- What are the expectations?
 - Accelerating muons to high energies ~ 10 TeV with high luminosity
 - Detectors optimized for studying muon collisions
 - Precise reconstruction and identification of all the objects
 - Mitigating beam induced background
 - Read out and store every collision event on tape
- Requires significant R&D in both accelerator and detector technologies
 - Need to tackle unprecedented challenges

Muon collider i
 Energy reach
 What are the ex
 Accelerating
 Detectors optimized for startying muon compressions

- Precise reconstruction and identification of all the objects
- Mitigating beam induced background

- Requires significant R&D in both accelerator and detector technologies
 - Need to tackle unprecedented challenges

Muon collider i ics potential.
Energy reacl
What are the example of the community
Accelerating

AI/ML

Detectors or

Precise red

Mitigating

Requires signif

- Need to tack

chnologies

- Muon collider is an innovative machine with incredible physics potential.
 - Energy reach of hadron collider + Precision of a lepton collider

- What are the expectations?
 - Accelerating muons to high energies ~ 10 TeV with high luminosity
 - Detectors optimized for studying muon collisions
 - Precise reconstruction and identification of all the objects
 - Mitigating beam induced background
 - Read out and store every collision event on tape
- Requires significant R&D in both accelerator and detector technologies
 - Need to tackle unprecedented challenges

- BIB is the biggest challenge for physics performance
 - Arising from the decay of muons in the beam

- BIB is the biggest challenge for physics performance
 - Arising from the decay of muons in the beam
- Mitigate using on-detector readout and filtering
 - Smart pixels: Pixel sensors w/ ML on chip

From Eric's poster on Smart Pixels for Muon Collider

- BIB is the biggest challenge for physics performance
 - Arising from the decay of muons in the beam
- Mitigate using on-detector readout and filtering
 - Smart pixels: Pixel sensors w/ ML on chip

Step 0: Simulating BIB; Computationally expensive!

Eric. Y, Karri. D.P + Samrt pixels collab.

- BIB is the biggest challenge for physics performance
 - Arising from the decay of muons in the beam

- Mitigate using on-detector readout and filtering
 - Step 0: Simulating BIB; Computationally expensive!

How do we do that?

Ans: Generative ML; See Kevin's talk

Eric. Y, Karri. D.P + Samrt pixels collab.

- BIB is the biggest challenge for physics performance
 - Arising from the decay of muons in the beam

- Mitigate using on-detector readout and filtering
 - Step 0: Simulating BIB; Computationally expensive!

How do we do that?

Ans: Generative ML; See Kevin's talk

But can we do more with this?

Eric. Y, Karri. D.P + Samrt pixels collab.

- Optimized nozzle design, can greatly reduce noise BIB
 - We can use the core principle of ML: Gradient decent to achieve this!
 - But FLUKA / GEANT 4 are not differentiable!

- Optimized nozzle design, can greatly reduce noise BIB
 - Surrogate Models to rescue!

source

- Optimized nozzle / MDI design, can greatly reduce noise BIB
 - Surrogate Models / Generative ML to rescue!
 - With a differentiable Twin, We can fully tune and optimize MDI

source

- Optimized nozzle / MDI design, can greatly reduce noise BIB
 - Surrogate Models / Generative ML to rescue!
 - With a differentiable Twin, We can fully tune and optimize MDI

0

Optimizing μ C detectors

- We can use ML to optimize the entire detector design!
 - Existing effort to optimize geometry of CRILIN for MUSIC detector
- First principled effort to make GEANT differentiable w/ multiple scattering

Reconstruction for Optimized Detectors

- Efforts to develop "cross-detector" ML Particle Flow backbone model
 - Train on one detector design → Adapt it on another detector desgin
- Can serve as Ideal surrogate model to optimize entire detector geometry

The big picture

• So far, explored applications of AI/ML to improve detectors

The big picture

- So far, explored applications of AI/ML to improve detectors
 - But, what is the most critical system for the next 5+ years?

Optimizing Target & Capture

- Target should sustain high power & Intensity + Powerful Magnets
- Use ML models to find and test optimal target configurations
- We are developing differentiable Geant 4
 - Why not extend this to differentiable g4beamline!

Optimization for the Demonstrator

- Muon cooling is critical and challenging
 - Design choices strongly effect luminosity

- Muon cooling systems has $\mathcal{O}(100)$ parameters to optimize
 - Time consuming to try each configuration

ParBayesianOptimization in Action (Round 1)

- Use Bayesian optimization /+ Surrogate Model
 - Used for optimizing ML hyper parameters

$$\frac{d\epsilon_T}{ds} = -\frac{1}{\beta^2 E} \frac{dE}{ds} \epsilon_T + \frac{\beta_\gamma \beta_T}{2} \frac{d\theta_0^2}{ds}$$

Can be used to reduce overall cost!

- Unlike traditional colliders, muons can't stay for long in the ring
 - Really important to have a full control on the beam dynamics

- Unlike traditional colliders, muons can't stay for long in the ring
 - Really important to have a full control on the beam dynamics
- Is it feasible to implement this system?

Current approaches for realtime-beam control

- We can adapt real-time AI approaches to μ C accelerators
 - Reduce / eliminate down time to tune the machine

What is the most critical component in the μ C apparatus ?

What is the most critical component in the μ C apparatus ?

What is the most critical component in the μ C apparatus ?

What do they do if you ramp up current?

What is the most critical component in the μ C apparatus ?

What do they do if you ramp up current?

How do we mitigate this?

Real-time quench protection

- For field strength, magnets must operate at high current
 - Need to flag precursors before the quench occurs
- Using SSMs with various data streams for Quench prediction
 - Targeting sub milliseconds latency

Maira.K, Abhijith. G, et. Al

<u>Funded by LDRD</u>

Conclusion

- Not a full list of ML opportunities / efforts in Muon collider
 - Personal take on where ML could be impactful in near future

- Muon Collider is an exiting and challenging program
 - We need bold and unconventional solutions to solve them

"AI/ML approaches are our best bet for making significant and rapid progress"

-N. Tran

ENGINEERING TIP:
WHEN YOU DO A TASK BY HAND,
YOU CAN TECHNICALLY SAY YOU
TRAINED A NEURAL NET TO DO IT.

Thank you!