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Expectations from Muon Collider

e Muon collider is an innovative machine with incredible physics potential.

- Energy reach of hadron collider + Precision of a lepton collider

e \What are the expectations ?

- # Fermilab
2 Abhijith Gandrakota | ML for uC
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e Muon collider is an innovative machine with incredible physics potential.

- Energy reach of hadron collider + Precision of a lepton collider

 \What are the expectations ?
- Accelerating muons to high energies ~ 10 TeV with high luminosity
- Detectors optimized for studying muon collisions
Precise reconstruction and identification of all the objects
e Mitigating beam induced background

 Read out and store every collision event on tape
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Expectations from Muon Collider

e Muon collider is an innovative machine with incredible physics potential.

- Energy reach of hadron collider + Precision of a lepton collider

 \What are the expectations ?
- Accelerating muons to high energies ~ 10 TeV with high luminosity
- Detectors optimized for studying muon collisions
Precise reconstruction and identification of all the objects
e Mitigating beam induced background

 Read out and store every collision event on tape

e Requires significant R&D in both accelerator and detector technologies

- Need to tackle unprecedented challenges

2% Fermilab

2 Abhijith Gandrakota | ML for uC



ILEX
\ HEP A,EE

» Community

- # Fermilab
3 Abhijith Gandrakota | ML for uC



Expectations from Muon Collider
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Expectations from Muon Collider

- Accelerating muons to high energies ~ 10 TeV with high luminosity
- Detectors optimized for studying muon collisions
Precise reconstruction

e Mitigating beam induced background
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Mitigating Beam Induced Background

e BIB is the biggest challenge for physics performance

- Arising from the decay of muons in the beam

final focusing magnets

magnet shielding

3¢ Fermilab
4 Abhijith Gandrakota | ML for uC



Eric. Y, Karri. D.P + Samrt pixels collab.

Mitigating Beam Induced Background

e BIB is the biggest challenge for physics performance

inal focusin

- Arising from the decay of muons in the beam

magnet shielding

e Mitigate using on-detector readout and filtering

- Smart pixels: Pixel sensors w/ ML on chip

ROC and AUC Comparison

Params | Size (KB)| Sig. Eff. | Bkg. Rej.
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From Eric’s poster on Smart Pixels for Muon Collider
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Mitigating Beam Induced Background

e BIB is the biggest challenge for physics performance

- Arising from the decay of muons in the beam

magnet shielding

o Mit
- S

Step 0: Simulating BIB ; Computationally expensive !
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Mitigating Beam Induced Background

e BIB is the biggest challenge for physics performance

final focusing magnets

- Arising from the decay of muons in the beam

magnet shielding
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Mitigating Beam Induced Background

e BIB is the biggest challenge for physics performance

- Arising from the decay of muons in the beam

magnet shielding

e Mit
- S Step 0: Simulating BIB ; Computationally expensive ! Lo
How do we do that ?
Ans: Generative ML: See Kevin'’s talk |
| But can we do more with this ?
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Eric. Y, Karri. D.P + Samrt pixels collab.
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Mitigating Beam Induced Background

e Optimized nozzle design, can greatly reduce noise BIB

- We can use the core principle of ML: Gradient decent to achieve this !

o But FLUKA / GEANT 4 are not differentiable |
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Mitigating Beam Induced Background

e Optimized nozzle design, can greatly reduce noise BIB

- Surrogate Models to rescue !

- - '\ Expensive, since it involves many
= =7 simulation runs

source
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https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241/

Mitigating Beam Induced Background

¢ Optimized nozzle / MDI design, can greatly reduce noise BIB
- Surrogate Models / Generative ML to rescue !

e With a differentiable Twin, We can fully tune and optimize MDI

« Sensitivity
analysis
« Optimization

Surrogate
model

. R y~ f(X)
— ="'« Expensive, since it involves many
- — |/ simulation runs

Cheap, since training and employing source
a surrogate model is not expensive -
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https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241/

Mitigating Beam Induced Background

e Optimized nozzle / MDI design, can greatly reduce noise BIB
- Surrogate Models / Generative ML to rescue !

e With a differentiable Twin, We can fully tune and optimize MDI

[ ] Talk by L. Castelli at IMCC workshop
FLUKA simulation
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l, 60 - —_— W
i : === W_Xxxi
FLUKA simulation used to ==
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Talk by Jeff. K, Micheal. K ; arxiv:2405.07944

Optimizing 1 C detectors

 \We can use ML to optimize the entire detector design !

- Existing effort to optimize geometry of CRILIN for MUSIC detector

e First principled effort to make GEANT differentiable w/ multiple scattering
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https://indico.cern.ch/event/1481852/contributions/6464897/attachments/3085221/5462063/MODE_V.pdf
https://indico.cern.ch/event/1481852/contributions/6464896/attachments/3082839/5457210/MODE_2025_JK.pdf
https://arxiv.org/pdf/2405.07944

Reconstruction for Optimized Detectors

e Efforts to develop “cross-detector” ML Particle Flow backbone model

- Train on one detector design — Adapt it on another detector desgin

e Can serve as ldeal surrogate model to optimize entire detector geometry

CLIC full sim

CLD full sim =

Different
detector
configuration
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Fine-tuning + Inference

CLIC full sim

8 CLD full sim

Different
detector
configuration

Work by Faoruk. M et. al
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.111.092015

Image from Tova. H

The big picture

e So far, explored applications of Al/ML to improve detectors

high-energy
acceleration

low-energy collider
muons acceleration ring
protons pions N nti-
target cooling channel
particle
detector
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Image from Tova. H

The big picture

e So far, explored applications of Al/ML to improve detectors

- But, what is the most critical system for the next 5+ years ?

high-energy
acceleration

low-energy collider

muons acceleration

protons pions 7 >

target cooling channel

particle
detector
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A.G? + Fermilab

Optimizing Target & Capture
e Target should sustain high power & Intensity + Powerful Magnets

e Use ML models to find and test optimal target configurations

e \We are developing differentiable Geant 4

- Why not extend this to differentiable g4beamline !

high-energy
acceleration

collider
ring

low-energy
acceleration

The goal is to turn a ‘cloud’ of muons ...into a tight beam particle
trave(llng in all directions... -",o u-avelhng in one direction. detector
................ .o
relaienipeisnll)
............................. ° )
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Nick.S, et. al

Optimization for the Demonstrator

e Muon cooling is critical and challenging

- Design choices strongly effect luminosity ==

e Muon cooling systems has ©O(100) parameters to optimize

- Time consuming to try each configuration ParBayesianOptimization n Action (Round )

0.66

e Use Bayesian optimization /+ Surrogate Model

Score (Model Performan

- Used for optimizing ML hyper parameters
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Fermilab AD Division

Real-time Beam Control

e Unlike traditional colliders, muons can't stay for long in the ring

- Really important to have a full control on the beam dynamics

high-energy
acceleration

Sense

collider
ring

low-energy
acceleration

Accelerator

Surrogate
Model

particle
detector

e,
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Fermilab AD Division

Real-time Beam Control

e Unlike traditional colliders, muons can’t stay for long in the ring

- Really important to have a full control on the beam dynamics

e |s it feasible to implement this system ?

high-energy
acceleration

- collider
ring

low-energy
acceleration

particle
detector
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Fermilab AD Division

Real-time Beam Control

e Current approaches for realtime-beam control

high-energy
acceleration

collider
ring

low-energy
acceleration

X

Low-Energy
Neutrino
Experiments

particle
detector
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Fermilab AD Division

Real-time Beam Control

e \We can adapt real-time Al approaches to uC accelerators

- Reduce / eliminate down time to tune the machine

Real-time Edge Al Distributed System

Differentiate beam loss monitor signals around the ring;
|dentify if main injector or recycler ring is the source

high-energy
acceleration

collider
ring

low-energy
acceleration

Low-Energy =
Neutrino
Experiments

High-Energy
Neutrino
Experiments

particle
detector

Fixed-Target
Experiments,
Test Beam
Facllity

Muon \ S

- lon Source Experiments

NuMI Beam Variability Prediction
& LBNF monitoring
Predict NuMI proton beam
position, intensity and horn
current

Linac RF Optimization &

Predict PF parameters to
keep beam energy
constant and minimize
eminence
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What’s left for us to solve ?

What is the most critical component in the uC apparatus ?
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What’s left for us to solve ?

What is the most critical component in the uC apparatus ?

What do they do if you ramp up current ?
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What’s left for us to solve ?

What is the most critical component in the uC apparatus ?
What do they do if you ramp up current ?

How do we mitigate this ?

Quench Protection !
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Real-time quench protection

e For field strength, magnets must operate at high current

- Need to flag precursors before the quench occurs

e Using SSMs with various data streams for Quench prediction

- Targeting sub milliseconds latency

IS Quench Antena]
' i /' \ .

-————)[ AE Sensors j e N

’ . [ Il . | I ! | | L I | | 1 | l 1 1 | ?
. -0.063 -0.062 -0.061
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Conclusion

e Not a full list of ML opportunities / efforts in Muon collider

- Personal take on where ML could be impactful in near future

e Muon Collider is an exiting and challenging program

- We need bold and unconventional solutions to solve them

“Al/ML approaches are our best bet for making
significant and rapid progress”

-N. Tran
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OH, HEY, YOU ORGANIZED
OUR PHOTO ARCHIVE!

YEAH, T TRAINED A NEURAL
NET TO SORT THE UNLABELED
PHOTOS INTO CATEGORIES.

WHOA! NICE LIORK! )

ENGINEERING TiP:
WHEN YOU DO A TASK BY HAND
YoU CAN TECHNICALLY SAY YOU
TRAINED A NEURAL NET To DO IT.




