Computing Resources and Challenges

Kevin Pedro (FNAL) August 8, 2025

Processing Chain

Generation

- $\mu^+\mu^-$ interactions
- beam-induced backgrounds

Simulation

- Particle interaction w/ passive & active detector elements
- → SimHits

Overlay

 Add beam-induced background SimHits to μ⁺μ⁻ interaction events

Digitization

- Electronics response in each sub-detector
- → RecHits

Reconstruction

 High-level objects: tracks, vertices, jets, muons, electrons, etc.

Expected computational intensity of each step:

P: negative weight reduction, GPU-based generators

FullSim is intensive; FastSim (Delphes) is cheap

P: GPU-based simulation; generative ML

Potentially most expensive step (BIB simulation in particular)

P: premixing, generative ML

Linear scaling w/
hits

P: GPU porting?

~Quadratic (superlinear) scaling w/ # hits (classically)

♠: Smart reduction,~linear time MLclustering

Profiling

Step	CPU	Memory	Disk
BIB simulation	up to 24 hours/event (10 ⁸ particles)	up to 32 GB/event (considering whole chain)	~20 GB/event (BIB)
BIB overlay	5 mins/event (before digitization!)		
Tracking	5 mins/event up to hours/event (depends on lattice)		~1 MB/event (signal, w/o BIB)

- These numbers consider the *current* simulation stack being used for design & physics studies
- ➤ BIB is main driver of computational needs

Available Resources

Major computing clusters:

- lxplus (docs)
- DESY
- INFN
- OSG → dedicated!
- Fermilab LPC
- Analysis facilities (US, IT, DE, ES, ...)

Future collider usage:

- Most major institutional clusters do not currently have dedicated resources
 - Batch CPUs available via user fair share as usual (with whatever memory they have)
- More difficult to find: disk space
 - o Some at INFN, OSG

Heterogeneous Resources

- Most major clusters have *some* GPUs
 - o Often partitioned or shared between users
- Different workflows/steps have different needs:
 - o Code development: can live with partitioned/shared GPUs
 - o Large-scale processing (training, simulation, etc.): need dedicated GPUs
 - e.g. from HPC centers
 - o Analysis (e.g. ML inference): some analysis facilities provided specific inference servers (via Triton)
- Other alternative resources: ARM CPUs, FPGAs, etc.
 - o Less widely available
 - o Some providers have them, e.g. National Research Platform in US
 - o Cloud: AWS (EC2) has F2 instances, GCP has TPUs, etc.

Data Management

- Experiments have operations funding to produce and manage data:
 - o Data movement (availability, managing site storage pledges, etc.)
 - o Metadata (provenance, versioning, physics info, etc.)
 - o Discoverability (search, enumeration, access (tokens))
- Can there be a community-based, ground-up approach? Maybe!
 - o Rucio: common tool now used by most experiments
 - Primarily for data movement
 - Also has metadata facilities
 - Avoid fragmentation of info across multiple databases
 - Users can upload custom datasets
 - o Would need some central management, but could be mostly user-driven
- Muon collider data is complicated!
 - o Many formats/products (FLUKA, geometry XML, ROOT, ...)
 - o Strong dependence on lattice (from BIB generation to tracking)

rucio.cern.ch

BIB Simulation

- Full simulation of 10⁸ particles is necessarily slow
- How to speed it up:
 - 1. Run on GPU:
 - Exploit SIMD with huge batches (almost entirely photons and neutrons)

BIB Simulation

- Full simulation of 10⁸ particles is necessarily slow
- How to speed it up:
 - 2. Train generative ML algorithm:
 - GPU SIM hopefully provides sufficient events for training
 - Current ML4Sim efforts mostly condition on incident particle properties
 - BIB is a specific process: generate all particle hits together, condition on other relevant quantities (detector material/geometry/etc.)

BIB Overlay

- Next step after simulating BIB; learn from LHC pileup overlay experience
- 1. Naïve approach: just overlay all simulated hits
 - o Massively I/O intensive
- 2. Premixing:
 - o Pros: amortize computing costs, compress hits
 - Cons: code maintenance (compression),
 I/O issues (large files, high availability),
 scenario-dependent (geometry, BIB profile, etc.)
- 3. ML-based:
 - Avoids both speed and I/O issues
 - o Maybe generalizable to multiple scenarios?

Quick Reminder about PreMixing Functionality

M. Hildreth

Conclusions

- Muon collider has unique computing challenges
 - o Can learn from LHC for some aspects
 - Both what to do and what not to do
 - o Other aspects quite different
 - e.g. "on-the-fly" pileup mixing, currently being explored for CMS, not feasible for BIB (10⁸ particles)
- Data management is important for reproducibility
- Particular challenge: develop a tightly-integrated design loop between accelerator and detector
 - o With few dedicated computing resources: no running experiments yet!
 - o Aim to be creative and try to grow our resources over time
- Need to support each other within the community in order to succeed