

Aug 8, 2025

BlueSky R&D

Cristián Peña

Next Generation Particle Detectors

- Collider experiments measure very well
 - Position, charge and energy of particles
- CMS and ATLAS are building first-generation of 4D-detectors
 - Next-gen detectors will have high granularity time domain information
 - At the tracker, calorimeter, muon detectors, and L1 trigger
- Future detectors moving towards full 5D Particle Flow
 - Active R&D to achieve required performance for future experiment

- 1: ETL Thermal Screen
- 2: Disk 1. Face 1
- 3: Disk 1 Support Plate
- 4: Disk 1, Face 2
- 5: ETL Mounting Bracket
- 6: Disk 2, Face
- 7: Disk 2 Support Plate
- 9. Disk 2 Support
- HGCal Neutron Moderator
- 10: ETL Support Cone
- 11: Support cone insulation
- 12: HGCal Thermal Screen

Next Generation Particle Detectors

- Collider experiments measure very well
 - Position, charge and energy of particles
- CMS and ATLAS are building first-generation of 4D-detectors
 - Next-gen detectors will have high granularity time domain information
 - At the tracker, calorimeter, muon detectors, and L1 trigger
- Future detectors moving towards full 5D Particle Flow
 - Active R&D to achieve required performance for future experiment

BlueSky R&D on Sensors, ASICs, front-end electronics and early adoption of emerging technologies is key

- Disk 2 Support Plate
- **HGCal Neutron Moderator** ETL Support Cone
- 11: Support cone insulation
- 12: HGCal Thermal Screen

Current LGAD Sensor Performance in System

- Developments for the LHC applications are now frozen
 - Current activities focused to scale up the production with high yields and QA/QC
- Excellent performance achieved for CMS/ATLAS applications

From T. Liu

@ TWEPP24

First large area precision timing detectors

See Detectors and Instrumentation R&D parallel A. Apresyan, J. Ott, M. Safdari* (PT)

Timing Detectors Today

- Located at Lab D at SiDet in Fermilab
 - Configured to produce 12 modules per batch

Large scale production imminent

AC-Coupled LGADS (AC-LGADs)

- Improve 4D-trackers to achieve 100% fill factor, and high position resolution
- An evolution of DC-LGADs
 - Excellent time resolution achieved across full sensor surface
 - Charge sharing enables excellent position resolution without fine pixelation

Signal sharing allows for improved position resolution

Sensor R&D and Optimization

- Several rounds manufactured over the last few years
 - R&D from developments for HL-LHC, synergies between HEP and NP
 - Optimize position resolution, timing resolution, fill-factor, ...
- Extensive characterization and design studies

JINST 17 (2022) P05001

Photographs of some of the HPK AC-LGAD strip devices tested in this campaign

Photographs of the BNL AC-LGAD pixel devices tested in this campaign

AC-LGAD Sensor Performance

JINST 18 (2023) P06013

- Position reconstruction
 - Achieve 15-20 μm resolution in 10mm strips, 500 μm pitch
- Excellent time resolution
 - Achieve 30-35 ps for 10 mm strips

Detection efficiency across surface

Position and **Time** resolutions across surface

Towards Better Time Resolution

NIM A (2025) 170224

- Thinner sensors improve time resolution by decreasing Landau contribution
 - AC-LGAD from HPK with 20, 30, 50 μm thickness
 - Almost fully metallized, optimized for timing performance
- Uniform time resolution across full sensor area
 - 25 ps for 30 μm thick sensor, 20 ps for 20 μm thick sensor

HPK 2x2, 500x500 μm² pixel size

Silicon Carbide LGADs

TaoYang @ CPAD2024

- 4H-SiC has potential applications in radiation detection, especially fast time detection and high temperature
- Fabrication and testing of DC and AC-LGADs is ongoing

More fabrication details on: B.Sekely et al., "Progress Towards 4H-SiC Low Gain Avalanche Detectors (LGADs)," in Book of Abstracts from the ICSCRM 2024, pp.694-223695, Sept 2024. doi:10.4028/b-f6NMEP.224

Silicon Carbide LGADs

TaoYang @ CPAD2024

Developed a UV-TCT to characterize SiC LGADs

Time resolution to MIP like signals ~35 ps

Silicon Carbide LGADs

TaoYang @ CPAD2024

Developed a UV-TCT to characterize SiC LGADs

AC-LGAD position resolution is 5.8 µm

- Constant fraction discriminator (CFD) chip to remove time-walk effect
 - Several successful iteration fabricated and benchmarked
 - Latest iteration improves performance for AC-LGADs

Low-power chip and new architecture towards scalable large area timing detectors

Assembly, setup and characterization advancing at fast pace

Since June, FCFDv1.1 already tested with charge injection, laser and 5 GeV electrons

Preliminary results

5 GeV electrons

Charge injection according to spec and simulation

Preliminary results

5 GeV electrons

Excellent results: 36 ps time resolution for 5 GeV electrons

Readout Chip for Pixel Detectors

Input from T. Heim (LBL)

Progress towards readout chips for 4D pixels in 28 nm CMOS

Targeting high time precision analog front-end and low TDC; in high radiation environment

FORC: Film on Readout Chip

Input from T. Heim (LBL)

Improve bump bonding limitations by using thin film deposition

Allows readout chip and sensor to be optimized in independent technologies

MAPS

More details in A. Apresyan's talk

- Test beam at FNAL (120 GeV protons) in Summer 2024
- CMS 110 nm technology. 25 um pixel pitch, active area 1.28x1.28 cm²
- Excellent performance demonstrated in test-beam
 - Position resolution around 5 μm
 - Efficiency near 100%
- Detailed measurements are now continuing with laser

SLAC MAPS efforts

More details in A. Apresyan's talk

- Novel TowerJazz-Panasonic (TPSCO) 65 nm CMOS imaging process
 - Available through CERN WP1.2 collaboration
- First prototype preliminary results encouraging: Threshold and RMS decrease with BV. More testing ongoing
- Design of NAPA-p2 has started to tackle large sensor challenges

Picture of NAPA-p1 prototype from WP1.2 shared submission

Napa-p1

Napa-p1

DMAPS Results: MALTA Telescope

MALTA: DMAPS in Tower 180 nm CMOS

More details in A. Apresyan's talk

- Telescoped developed for beam tests at SPS CERN
 - 6 MALTA planes. Each sensor is 512x512 pixels, each of 36.4 um. Plane efficiency above 94%
- Track position resolution: 4.7um. Track timing resolution: 2.1 ns

https://arxiv.org/pdf/2304.01104

3D-Integrated Sensors

- Low-power, highly granular detectors in (x, t)
 - Adoption of 3D-integration has been cost-prohibitive in academia
 - Will enable breakthroughs across HEP, NP, BES, and FES
- Joint development effort of SLAC, FNAL and LLNL teams
 - Partner with industry leaders to implement new technologies
 - Design goal is to achieve position resolution ~5 μm, timing ~ 5-10 ps

The Nikon Z 9's Stacked CMOS sensor reads out fast enough to eliminate the need for a mechanical shutter (Credit: pcmag.com)

 Pixel area – 2) Integral memory – 3) Hi-speed signal processing circuit – 4) Image processing engine

3D-Integrated Sensors

- In partnership with Tower Semiconductor
 - Full wafer run on 12", using their 65 nm process
 - Layout Variations: pixels vs. strips
- Design submitted: expect back in 3-5 months

3D-Integrated Sensors

- The first 28nm readout ASIC prototype (1x3 mm²) submitted to TSMC in August
 - Linear pixel array: two variants of 50μ m and one variant of 100μ m size pixels
 - Main goals are to test the main ingredients to implement full chip
- During 2025, we will tape-out another MPW run (5x6 mm²)
 - Main priority is a 50x50 μm² pixels, but can be bump-bonded also to larger sensor pitch

First readout ASIC prototype, TSMC 28 nm

Calorimetry Blue Sky: Inorganic Scintillators

Input from G. Cummings (FNAL)

Scintillating Glass development

- Cheaper than crystals
- Customizable
- Challenge
 - Density
 - Uniformity + Quality
 - Radiation tolerance?
- Goals:
 - Homogenous HCAL
 - Cheaper homogenous calorimeters in general
- Novel Implementations
 - GRANITA
 - Crystal grains bathed in high-Z liquid
 - Dual Readout in crystals
 - Precision EM resolution not yet achieved w/ Cherenkov and Scintillation separation

R&D towards cost-effective homogenous calorimeters

Calorimetry Blue Sky: Organic Scintillators

Input from G. Cummings (FNAL)

- Goal: Dual Readout in plastics
 - Separation of Cherenkov and Scintillation Light
- Challenge: Spectra overlap
 - Scintillation Blue (and a lot of it)
 - Cherenkov Green (and little of it)
- Two Methods
 - Quantum Dot Doping
 - Red-shift scintillation spectrum
 - Delay scintillation spectrum for pulse shape discrimination
 - Conventional Dopants w/ delayed time structure
 - Push scintillation more into UV
 - Delay the emission, and separate by time

... If NO UV SIPM, SECONDARY DOPANT NEEDED

$$(CH_3)_2N \longrightarrow O \longrightarrow O \longrightarrow (CH_3)_2N \longrightarrow H_2N \longrightarrow O \longrightarrow O \longrightarrow (CH_3)_2N \longrightarrow H_2N \longrightarrow O \longrightarrow O \longrightarrow (CH_3)_2N \longrightarrow H_2N \longrightarrow O \longrightarrow O \longrightarrow (CH_3)_2N \longrightarrow$$

R&D towards dual readout calorimetry with plastics scintillators and emerging technologies (QDots)

AI/ML on the front-end

- Detectors at next-gen experiments can benefit from real-time machine learning in readout
 - Edge intelligence: feature extraction, classification, data compression
 - Efficiency: lower computational power/storage needs for transmission
- Implementations are being developed in FPGAs, ASICs

FLEXIBILITY

EFFICIENCY

AI/ML on Calorimeters

- Data challenges at future colliders:
 - Data volume, complexity, power consumption, latency, and radiation tolerance
 - Move more data processing to on-detector electronics
- ECON-T ASIC: selects/compresses trigger data for transmission off-detector
 - Can we do on-detector data compression with machine learning?
- Neural Network (NN) autoencoder in ASIC for on-detector data compression
 - Low power consumption, latency and rad tolerance → well suited to ASIC
 - Complexity: design must be re-configurable → challenging for ASIC

AI/ML on Calorimeters

- SiD detector configuration with 25x100 µm² pixel in the calorimeter at ILC
 - Changing analog to binary digital has no energy resolution degradation
- Synergies with developments of MAPS for tracking in Higgs Factories
 - MAPS applied to the ECal exceeds the physics performance as specified in the ILC **TDR**
 - Future planned studies include the reconstruction of showers and $\pi 0$ within jets, and their impact on jet energy resolution
- Lots of available data available per shower
 - Possibilities for large gain in performance, new capabilities (anomaly detection), and data reduction using AI/ML on chip

GEANT4 simulations of Transverse distribution of two 10 GeV showers separated by one cm

Eur. Phys. J. Plus (2021) 136:1066

Al on Chip: Smart Pixels

- Al embedded on a chip to:
 - Filter data at the source for data reduction
- Data reduction through
 - Filtering through removing low pT clusters
 - Featurization through converting raw data to physics information
- Customizable (reprogrammable weights) NN implemented directly in the front-end

AI/ML Implementation

Smart data reduction at the edge using pulse shapes, and drift & induced currents

Analog Frontend Prototype

- The AFE prototype designed in TSMC 28 nm
 - ROIC pixel size is $25 \,\mu\text{m}^2$
 - Low power performance : ~5 μW/pixel
- Preamplifier dynamic range 64 aC 2.1 fC
 - Equivalent noise charge (ENC) 31e- with 400e- threshold (no sensor cap)
 - Total charge dispersion < 100e- across entire matrix with 400e- threshold (no sensor cap)

Lots of progress on actual chip implementation

Towards AI/ML for AC-LGADs

- AC-LGAD sensors have a complex signal signature due to charge sharing
- Position reconstruction is based on the extraction of the signals read out by each electrode
 - Used to infer the x-y coordinates of the particle hit position

JINST 19 (2024) C01028

FBK sensor with 6×6 matrix 450 μm pitch pixels

Towards AI/ML for AC-LGADs

- Improve position reconstruction using AI/ML tools
 - Trained using IR-laser dataset, tested on test-beam dataset
 - As a reference, compare to analytical reconstruction
- Measure position resolution 65 µm
 - A standard binary read-out : ~130 μm resolution
 - Can achieve ~10-15 μm resolution by increasing sensor gain

Huge expected performance gain from ML on chip!

Difference between predicted (x_{RSD}) and measured (x_{Tracker}) positions

Sum of the 4 highest amplitudes in the matrix [mV]

Position resolution as a function of the total amplitude of the 4 highest signals

The Next Frontier: Going Cold

Quantum Sensors: superconducting nanowire single photon detector

- Single photon (heat) triggers detector out of superconductor state
- Resistance quickly (ps) jumps to few $k\Omega \rightarrow$ detector current into readout
- Highest performance single-photon detector, from UV to mid-infrared

Operating temperature: 1-4 Kelvin

The Next Frontier: Going Cold

New thrust towards sub-eV charged particle tracking with picosecond level time resolution

New: JINST 20 P03001

- Strip and Pixel Telescope
- Pixel and Strips Cryostat Cryostat
- New R&D program for SNSPD to detect high energy particle with the Fermilab Test Beam Facility
- First test beam to detect 120 GeV proton and 8 GeV electrons and pions with large-area (2×2 mm²) multi-pixel (8-pixel) SNSPD

Superconducting Nanowire Single Photon Detector (SNSPD) Particle

The Next Frontier: Going Cold

New: JINST 20 P03001

- Only 4 channels. Constrained by cryogenic needs
- Precise tracking telescope measure allow to measure absolute efficiency and response uniformity

The Next Frontier: Going Cold

TDC at Cryogenic Temperatures

10.36227/techrxiv.173949128.88095436/v1

Achieve ~7 ps resolution for ~25 fC injected charge

22 nm CMOS Global Foundry

TDC at Cryogenic Temperatures

10.36227/techrxiv.173949128.88095436/v1

Excellent performance observed at cryo temperatures

22 nm CMOS Global Foundry

Fine TDC Resolution vs Slow Chain Tuning Voltage

Advanced detector R&D calls for extraordinary talent & long term commitment

Thank You!

AI/ML on Calorimeters

- Reconfigurable NN for data compression
 - First use of machine learning on radhard ASIC for HEP
- Weights of the AutoEncoder algorithm are reprogrammable: can retrain the NN to suit future needs
- Design performed such as to optimize:
 - ASIC Metrics: power, size, latency, number of registers
 - Physics Metrics: energy resolution, trigger rates
- Chip testing in progress:
 - Autoencoder testing completed for full functionality and radiation-tolerance: works very well!
 - Physics performance of NN (with non-optimized training)
 comparable to threshold algo, optimization in progress For ~80% of the detector, we have sufficient

432 silicon sensor cells grouped

Selection of trigger cells above threshold

bandwidth to read out only 3 TC per BX. With the NN, can readout all 48 TC with lossy compression.

AI/ML Implementation

- Use AI/ML due to complicated pulse shapes, and drift & induced currents
 - y-profile is sensitive particle's p_T , x-profile uncorrelated with p_T
- Co-Design development with analog frontend pixels connected to a fully combinatorial digital classifier
 - Combinatorial design reduces dynamic power
 - Digital power estimated to be 300 μW for 256 pixels: ~1 μW/pixel
- Total power density (AFE + digital) < 1 W/cm²

AI/ML Implementation

arXiv:2310.02474

Classifier signal acceptance ~93% Data reduction is ~57-75%

Superconducting Nanowire Single Photon Detector (SNSPD) Particle

Strip and Pixel Telescope

- New R&D program for SNSPD to detect high energy particle with the Fermilab Test Beam Facility
- First test beam to detect 120 GeV proton and 8 GeV electrons and pions with large-area (2×2 mm²) multi-pixel (8-pixel) SNSPD

New thrust towards sub-eV charged particle tracking with picosecond level time resolution

SNSPD Under Testing

• WSi: $1.5\mu m$, 40% fill factor, $T_c = 2.8$ K; pixel size is 0.25x2 mm²

SNSPD Under Testing

Clear coincidence with reference MCP-PMT and signal clearly above noise for all currents

SNSPD Particle Detection Efficiency

- Readout 4 channels
- Precise tracking telescope (30um spatial resolution) to measure absolute efficiency and response uniformity for the first time

SNSPD response for protons, electrons, and pions

Very similar behavior among the 3 particle types

SNSPD Time Resolution

- MCP-PMT (<10 ps time resolution) provides a precise reference time stamp to measure the time resolution of SNSPD of 1 ns for the first time
- Next step: optimize SNSPD to measure intrinsic nanowire time resolution. Possibility to tackle the sub-ps and sub-micron 4D-tracking challenge!

CMS Timing Detector

- Caltech CMS group the leader of this project since 2012 (with FNAL)
- Sustained effort and progress in precision timing R&D

Endcap Timing Layer:

Silicon Sensor with Gain

Enhanced Physics Reach

Pileup degrades missing energy resolution

For SUSY searches: timing significantly reduces background

Precision Timing

Increase EWK-SUSY mass discovery reach by ~150 GeV

Enhanced Physics Reach

Pileup degrades missing energy resolution

For SUSY searches: timing significantly reduces background

Precision Timing

Accessing 3x smaller production rates!