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Next Generation Particle Detectors

2

CMS timing detector
ATLAS timing detector

• Collider experiments measure very well
– Position, charge and energy of particles

• CMS and ATLAS are building first-generation of 4D-detectors 
– Next-gen detectors will have high granularity time domain information
– At the tracker, calorimeter, muon detectors, and L1 trigger

• Future detectors moving towards full 5D Particle Flow 
– Active R&D to achieve required performance for future experiment
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• Collider experiments measure very well
– Position, charge and energy of particles

• CMS and ATLAS are building first-generation of 4D-detectors 
– Next-gen detectors will have high granularity time domain information
– At the tracker, calorimeter, muon detectors, and L1 trigger

• Future detectors moving towards full 5D Particle Flow 
– Active R&D to achieve required performance for future experiment

CMS timing detector
ATLAS timing detector

BlueSky R&D on Sensors, ASICs, front-end electronics and 
early adoption of emerging technologies is key



Current  LGAD Sensor Performance in System
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• Developments for the LHC applications are now frozen
– Current activities focused to scale up the production with high yields and QA/QC

• Excellent performance achieved for CMS/ATLAS applications From T. Liu 
@ TWEPP24

First large area precision timing detectors
See Detectors and Instrumentation R&D parallel

A. Apresyan, J. Ott, M. Safdari* (PT)



Timing Detectors Today
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• Located at Lab D at SiDet in Fermilab
–Configured to produce 12 modules per batch

Large scale production imminent 



AC-Coupled LGADS (AC-LGADs)
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• Improve 4D-trackers to achieve 100% fill factor, and high position resolution
• An evolution of DC-LGADs
– Excellent time resolution achieved across full sensor surface
– Charge sharing enables excellent position resolution without fine pixelation

AC-LGAD

Signal sharing allows for improved 
position resolutionMore details in A. Apresyan’s talk



Sensor R&D and Optimization
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• Several rounds manufactured over the last few years
– R&D from developments for HL-LHC, synergies between HEP and NP
– Optimize position resolution, timing resolution, fill-factor, …

• Extensive characterization and design studies

Photographs of some of the HPK AC-LGAD 
strip devices tested in this campaign

Photographs of the BNL AC-LGAD pixel 
devices tested in this campaign

JINST 17 (2022) P05001



AC-LGAD Sensor Performance
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• Position reconstruction
– Achieve 15-20 μm resolution in 10mm strips, 500 μm pitch

• Excellent time resolution
– Achieve 30-35 ps for 10 mm strips
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Varying metal width 
m  (SB1)µTwo-strip : BNL 50 

m  (SB2)µTwo-strip : BNL 100 
m  (SH3)µTwo-strip : HPK 50 

m  (SH7)µTwo-strip : HPK 100 
One or more strips : all sensors

FNAL 120 GeV proton beam Strip sensors

Detection efficiency across surface Position and Time resolutions across surface

JINST 18 (2023) P06013



Towards Better Time Resolution
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• Thinner sensors improve time resolution by decreasing Landau contribution 
– AC-LGAD from HPK with 20, 30, 50 μm thickness
– Almost fully metallized, optimized for timing performance 

• Uniform time resolution across full sensor area 
– 25 ps for 30 μm thick sensor, 20 ps for 20 μm thick sensor

HPK 2x2, 500x500 μm2 pixel size Time resolution for 20, 30 and 50 μm-thick sensors

NIM A (2025) 170224



Silicon Carbide LGADs
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• 4H-SiC has potential applications in radiation detection, especially fast 
time detection and high temperature

• Fabrication and testing of DC and AC-LGADs is ongoing

TaoYang @ CPAD2024



Silicon Carbide LGADs
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• Developed a UV-TCT to characterize SiC LGADs
TaoYang @ CPAD2024

Time resolution to MIP like signals ~35 ps



Silicon Carbide LGADs
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• Developed a UV-TCT to characterize SiC LGADs
TaoYang @ CPAD2024

AC-LGAD position resolution is 5.8 μm
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Next Generation Readout Chips

• Constant fraction discriminator (CFD) chip to remove time-walk effect
– Several successful iteration fabricated and benchmarked
– Latest iteration improves performance for AC-LGADs

Low-power chip and new architecture towards 
scalable large area timing detectors
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Ch1: IR Laser
Ch2: Analog out
Ch3: Discr Out 

Next Generation Readout Chips

Since June, FCFDv1.1 already tested with charge injection, 
laser and 5 GeV electrons

• Assembly, setup and characterization advancing at fast pace
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5 GeV electrons

Δt (s)

𝜎 = 36 ps

Next Generation Readout Chips

Charge injection

Preliminary results

Charge injection according to spec and simulation



16

5 GeV electrons

Δt (s)

𝜎 = 36 ps

Next Generation Readout Chips

Charge injection

Preliminary results

Excellent results: 36 ps time resolution for 5 GeV electrons
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Readout Chip for Pixel Detectors

Input from T. Heim (LBL)

Targeting high time precision analog front-end and low TDC; in 
high radiation environment

Progress towards readout chips for 4D pixels in 28 nm CMOS
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FORC: Film on Readout Chip

Improve bump bonding limitations by using thin film deposition

Allows readout chip and sensor to be optimized in independent 
technologies

Input from T. Heim (LBL)
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MAPS

• Test beam at FNAL (120 GeV protons) in Summer 2024
• CMS 110 nm technology. 25 um pixel pitch, active area 1.28x1.28 cm2  
• Excellent performance demonstrated in test-beam
–Position resolution around 5 μm
–Efficiency near 100%

• Detailed measurements are now continuing with laser  

More details in A. Apresyan’s talk



C. Pena | Testing and Characterization

• Novel TowerJazz-Panasonic (TPSCO) 65 nm CMOS imaging process
• Available through CERN WP1.2 collaboration

• First prototype preliminary results encouraging: Threshold and RMS 
decrease with BV. More testing ongoing

• Design of NAPA-p2 has started to tackle large sensor challenges

11/20/24 20

Napa-p1

SLAC MAPS efforts
More details in A. Apresyan’s talk



• MALTA: DMAPS in Tower 180 nm CMOS
• Telescoped developed for beam tests at SPS CERN
• 6 MALTA planes. Each sensor is 512x512 pixels, each of 36.4 

um. Plane efficiency above 94% 
• Track position resolution: 4.7um. Track timing resolution: 2.1 ns

https://arxiv.org/pdf/2304.01104
21

DMAPS Results: MALTA Telescope
More details in A. Apresyan’s talk



3D-Integrated Sensors
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• Low-power, highly granular detectors in (x, t)
– Adoption of 3D-integration has been cost-prohibitive in academia
– Will enable breakthroughs across HEP, NP, BES, and FES

• Joint development effort of SLAC, FNAL and LLNL teams 
– Partner with industry leaders to implement new technologies
– Design goal is to achieve position resolution ~5 μm, timing ~ 5-10 ps

1) Pixel area – 2) Integral memory – 3) Hi-speed signal 
processing circuit – 4) Image processing engine

The Nikon Z 9's Stacked CMOS sensor reads out fast 
enough to eliminate the need for a mechanical 

shutter (Credit: pcmag.com)
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• In partnership with Tower Semiconductor 
– Full wafer run on 12”, using their 65 nm process
– Layout Variations: pixels vs. strips

• Design submitted: expect back in 3-5 months

Sensor designs on the reticule

100x100 μm2 array sensor

3D TCAD model of an AC LGAD. 
The electrode pitch is 50 microns

3D-Integrated Sensors
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• The first 28nm readout ASIC prototype (1x3 mm2) 
submitted to TSMC in August
– Linear pixel array: two variants of 50µm and one 

variant of 100µm size pixels
– Main goals are to test the main ingredients to 

implement full chip
• During 2025, we will tape-out another MPW run 

(5x6 mm2) 
– Main priority is a 50x50 μm2 pixels, but can be 

bump-bonded also to larger sensor pitch

First readout ASIC prototype:  
block schematic and layoutFirst readout ASIC prototype, TSMC 28 nm  

3D-Integrated Sensors



Calorimetry Blue Sky: Inorganic Scintillators
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R&D towards cost-effective homogenous calorimeters

Input from G. Cummings (FNAL)



Calorimetry Blue Sky: Organic Scintillators
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R&D towards dual readout calorimetry with plastics 
scintillators and emerging technologies (QDots) 

Input from G. Cummings (FNAL)



AI/ML on the front-end
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• Detectors at next-gen experiments can benefit from real-time 
machine learning in readout

• Edge intelligence: feature extraction, classification, data 

compression 

• Efficiency: lower computational power/storage needs for 

transmission

• Implementations are being developed in FPGAs, ASICs

J. Gonski @ CPAD 2024



AI/ML on Calorimeters
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• Data challenges at future colliders: 
• Data volume, complexity, power consumption, latency, and radiation tolerance
• Move more data processing to on-detector electronics

• ECON-T ASIC : selects/compresses trigger data for transmission off-detector
• Can we do on-detector data compression with machine learning?

• Neural Network (NN) autoencoder in ASIC for on-detector data compression
• Low power consumption, latency and rad tolerance ➔ well suited to ASIC
• Complexity: design must be re-configurable  ➔ challenging for ASIC

"Imaging calorimeter" 
• ~6M readout channels.
• 60× increase from LHC 

calorimeters.



Cristián H. Peña — Fermilab 29C. Vernieri @ CPAD 2024

• SiD detector configuration with 25x100 µm2 pixel 
in the calorimeter at ILC


• Changing analog to binary digital has no 
energy resolution degradation


• Synergies with developments of MAPS for 
tracking in Higgs Factories


• MAPS applied to the ECal exceeds the 
physics performance as specified in the ILC 
TDR


• Future planned studies include the 
reconstruction of showers and π0 within jets, 
and their impact on jet energy resolution


• Lots of available data available per shower


• Possibilities for large gain in performance, 
new capabilities (anomaly detection), and 
data reduction using AI/ML on chip

AI/ML on Calorimeters



Cristián H. Peña — Fermilab

AI on Chip: Smart Pixels
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• AI embedded on a chip to: 
– Filter data at the source for data reduction

• Data reduction through
– Filtering through removing low pT clusters
– Featurization through converting raw data to physics information

• Customizable (reprogrammable weights) NN implemented directly in the front-end



AI/ML Implementation
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Smart data reduction at the edge using pulse 
shapes, and drift & induced currents



Cristián H. Peña — Fermilab 32

• The AFE prototype designed in TSMC 28 nm  
– ROIC pixel size is 25 µm2

– Low power performance :  ~5 μW/pixel
• Preamplifier dynamic range  64 aC – 2.1 fC
– Equivalent noise charge (ENC) 31e- with 400e- threshold (no sensor cap)
– Total charge dispersion < 100e- across entire matrix with 400e- threshold (no 

sensor cap) 

Analog Frontend Prototype

Lots of progress on actual chip implementation



Towards AI/ML for AC-LGADs
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• AC-LGAD sensors have a complex signal signature due to charge sharing
• Position reconstruction is based on the extraction of the signals read out 

by each electrode 
– Used to infer the 𝑥−𝑦 coordinates of the particle hit position

JINST 19 (2024) C01028

These pixels 
are read out FBK sensor with 6×6 matrix 

450 μm pitch pixels
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• Improve position reconstruction using AI/ML tools
– Trained using IR-laser dataset, tested on test-beam dataset 
– As a reference, compare to analytical reconstruction 

• Measure position resolution 65 μm 
– A standard binary read-out : ∼130 μm resolution

– Can achieve ~10-15 μm resolution by increasing sensor gain

Difference between predicted (𝑥RSD)  and  
measured (𝑥Tracker) positions

Position resolution as a function of the total 
amplitude of the 4 highest signals

JINST 19 (2024) C01028

Towards AI/ML for AC-LGADs

Huge expected performance gain from ML on chip!



The Next Frontier: Going Cold
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• Single photon (heat) triggers detector out of superconductor state


• Resistance quickly (ps) jumps to few kΩ → detector current into readout


• Highest performance single-photon detector, from UV to mid-infrared 


• Operating temperature : 1-4 Kelvin

Quantum Sensors: superconducting nanowire single photon detector
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The Next Frontier: Going Cold

• New R&D program for SNSPD to 
detect high energy particle with the 
Fermilab Test Beam Facility


• First test beam to detect 120 GeV 
proton and 8 GeV electrons and 
pions with  large-area (2×2 mm2 ) 
multi-pixel (8-pixel) SNSPD

New thrust towards sub-eV charged particle 
tracking with picosecond level time resolution 

New: JINST 20 P03001

https://iopscience.iop.org/article/10.1088/1748-0221/20/03/P03001


• New R&D program for SNSPD to detect 
high energy particle with the Fermilab 
Test Beam Facility


• First test beam to detect 120 GeV 
proton and 8 GeV electrons and pions 
with  large-area (2×2 mm2 ) multi-pixel 
(8-pixel) SNSPD

Superconducting Nanowire Single Photon Detector (SNSPD)
Particle

New thrust towards sub-eV charged particle tracking 
with picosecond level time resolution 

37
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• Only 4 channels. Constrained by cryogenic needs


• Precise tracking telescope measure allow to measure 
absolute efficiency and response uniformity
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The Next Frontier: Going Cold

New: JINST 20 P03001

https://iopscience.iop.org/article/10.1088/1748-0221/20/03/P03001
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• Only 4 channels. Constrained by cryogenic needs


• Precise tracking telescope measure allow to measure 
absolute efficiency and response uniformity
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The Next Frontier: Going Cold

ASICs operating at cryogenic temperatures will 

allow highly pixelated sensor  

New: JINST 20 P03001

https://iopscience.iop.org/article/10.1088/1748-0221/20/03/P03001
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TDC at Cryogenic Temperatures

Achieve ~7 ps resolution for ~25 fC injected charge

10.36227/techrxiv.173949128.88095436/v1

22 nm CMOS Global Foundry

https://www.techrxiv.org/users/670482/articles/1267948-a-sub-5-ps-jitter-time-to-digital-converter-asic-with-back-gate-delay-tuning-in-22-nm-cmos
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TDC at Cryogenic Temperatures

Achieve ~6 ps resolution for ~25 fC injected chargeExcellent performance observed at cryo 
temperatures

22 nm CMOS Global Foundry

10.36227/techrxiv.173949128.88095436/v1

https://www.techrxiv.org/users/670482/articles/1267948-a-sub-5-ps-jitter-time-to-digital-converter-asic-with-back-gate-delay-tuning-in-22-nm-cmos
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Advanced detector R&D calls for  
extraordinary talent & long term commitment
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Thank You!
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• Reconfigurable NN for data compression

• First use of machine learning on radhard ASIC for HEP


• Weights of the AutoEncoder algorithm are reprogrammable: can 
retrain the NN to suit future needs 


• Design performed such as to optimize:

• ASIC Metrics: power, size, latency, number of registers

• Physics Metrics: energy resolution, trigger rates


• Chip testing in progress:

• Autoencoder testing completed for full functionality and 

radiation-tolerance: works very well!

• Physics performance of NN (with non-optimized training) 

comparable to threshold algo, optimization in progress For ~80% of the detector, we have sufficient 
bandwidth to read out only 3 TC per BX.    With 
the NN, can readout all 48 TC with lossy 
compression.

AI/ML on Calorimeters

NN encoder



AI/ML Implementation
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• Use ΑΙ/ML due to complicated pulse shapes, and drift & induced currents

– y-profile is sensitive particle’s pT, x-profile uncorrelated with pT

• Co-Design development with analog frontend pixels connected to a fully 
combinatorial digital classifier

– Combinatorial design reduces dynamic power 

– Digital power estimated to be 300 μW for 256 pixels: ~1 μW/pixel 

• Total power density (AFE + digital) < 1 W/cm2



AI/ML Implementation
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Classifier signal acceptance ~93% 
Data reduction is  ~57-75%

arXiv:2310.02474

https://arxiv.org/abs/2310.02474


• New R&D program for SNSPD to detect 
high energy particle with the Fermilab 
Test Beam Facility


• First test beam to detect 120 GeV 
proton and 8 GeV electrons and pions 
with  large-area (2×2 mm2 ) multi-pixel 
(8-pixel) SNSPD

Superconducting Nanowire Single Photon Detector (SNSPD)
Particle

New thrust towards sub-eV charged particle tracking 
with picosecond level time resolution 

47



SNSPD Under Testing
• WSi: 1.5μm, 40% fill factor, Tc = 2.8 K; pixel size is 0.25x2 mm2 

48



SNSPD Under Testing

Clear coincidence with reference MCP-PMT and 
signal clearly above noise for all currents

49



SNSPD Particle Detection Efficiency
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• Readout 4 channels


• Precise tracking telescope (30um spatial resolution) to 
measure absolute efficiency and response uniformity for the 
first time

50



SNSPD response for protons, 
electrons, and pions

Very similar behavior among the 3 particle types
51



SNSPD Time Resolution
• MCP-PMT (<10 ps time resolution) provides a precise 

reference time stamp to measure the time resolution of SNSPD 
of 1 ns for the first time


• Next step: optimize SNSPD to measure intrinsic nanowire time 
resolution. Possibility to tackle the sub-ps and sub-micron 
4D-tracking challenge!
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CMS Timing Detector

• Caltech CMS group the leader of this project since 2012 (with FNAL)

• Sustained effort and progress in precision timing R&D 

Barrel Timing Layer:

Scintillating crystal + SiPM

Endcap Timing Layer:

Silicon Sensor with Gain

53



Enhanced Physics Reach
Pileup degrades missing energy 

resolution

Increase EWK-SUSY mass discovery reach by ~150 GeV

Precision Timing

For SUSY searches:            
timing significantly reduces 

background
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Enhanced Physics Reach
Pileup degrades missing energy 

resolution

Accessing 3x smaller production rates!

Precision Timing

For SUSY searches:            
timing significantly reduces 

background
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