OTHER OPPORTUNITIES WITH MUON BEAMS

Cari Cesarotti - MIT CTP-LI \rightarrow CERN-TH

USMCC Second Annual Meeting

University of Chicago, August 8 2025

PHYSICS WITH MUON BEAMS

Before we *collide* muons, we *accelerate* them.

Why is this interesting?

PHYSICS WITH MUON BEAMS

Before we *collide* muons, we *accelerate* them.

Why is this interesting?

- Reason 1: A high-energy & intense beam of muons has never been realized
- Reason 2: A muon beam may be available before the full collider

PHYSICS WITH MUON BEAMS

Before we *collide* muons, we *accelerate* them.

Why is this interesting?

Reason 1: A high-energy & intense beam of muons has never been realized

Reason 2: A muon beam may be available before the full collider

We are in the business of long time scale, exploratory science programs:

How can we utilize muon beams at all stages of development?

Muon beam experiments have been (will be) used to study...

Properties of the muon

Nuclear structure

Material Science

Muon beam experiments have been (will be) used to study...

Properties of the muon

Nuclear structure

Material Science

Muon Magnetic Moment

Violation of Muon Number

$$MEG (\mu \rightarrow e\gamma)$$
 $Mu2e (\mu \rightarrow e)$
 $Mu3e (\mu^{+} \rightarrow e^{+}e^{+}e^{-})$
 $COMET (\mu N \rightarrow eN)$

Muon beam experiments have been (will be) used to study...

Properties of the muon

Muon Magnetic Moment

Violation of Muon Number

$$MEG (\mu \rightarrow e\gamma)$$
 $Mu2e (\mu \rightarrow e)$
 $Mu3e (\mu^{+} \rightarrow e^{+}e^{+}e^{-})$
 $COMET (\mu N \rightarrow eN)$

Nuclear structure

Spin structure, polarization, etc.

 $COMPASS/COMPASS\ II$

Material Science

Muon beam experiments have been (will be) used to study...

Properties of the muon

Muon Magnetic Moment

Violation of Muon Number

$$MEG (\mu \rightarrow e\gamma)$$
 $Mu2e (\mu \rightarrow e)$
 $Mu3e (\mu^{+} \rightarrow e^{+}e^{+}e^{-})$
 $COMET (\mu N \rightarrow eN)$

Nuclear structure

Spin structure, polarization, etc.

 $COMPASS/COMPASS\ II$

Material Science

 μSR : Muon Spin Rotation/Relaxation PSI & J-PARC

Muon beam experiments have been (will be) used to study...

Properties of the muon

Muon Magnetic Moment

Violation of Muon Number

$$MEG (\mu \rightarrow e\gamma)$$
 $Mu2e (\mu \rightarrow e)$
 $Mu3e (\mu^{+} \rightarrow e^{+}e^{+}e^{-})$
 $COMET (\mu N \rightarrow eN)$

Nuclear structure

Spin structure, polarization, etc.

 $COMPASS/COMPASS\ II$

Material Science

 μSR : Muon Spin Rotation/Relaxation PSI & J-PARC

Reminder: all these are also probes of new physics

NOT-ACCELERATED MUON BEAMS

Where do these muon beams come from?

Capture of tertiary particles in the right momentum range

NOT-ACCELERATED MUON BEAMS

Where do these muon beams come from?

Capture of tertiary particles in the right momentum range

3 - 400 GeV

Accelerating muons would be a novel technology*

Necessary for collider R&D...and what else?

MUON COLLIDER (MUC) & MUON BEAM

The time to think about other ways we can use a muon beam is now

- 1. Full scale collider operation is several decades out, even if all goes well
- 2. R&D is highest priority, and will produce a muon beam
- 3. We can have physics deliverables well before the collider comes online

MUON COLLIDER (MUC) & MUON BEAM

The time to think about other ways we can use a muon beam is now

- 1. Full scale collider operation is several decades out, even if all goes well
- 2. R&D is highest priority, and will produce a muon beam
- 3. We can have physics deliverables well before the collider comes online

We might miss opportunities by not considering auxiliary experiments from the get-go

The time to think about other ways we can use a muon beam is *now*But when can we expect results?

The time to think about other ways we can use a muon beam is now But when can we expect results?

Low-energy beam dump

High-energy beam dump

Neutrino long baseline

The time to think about other ways we can use a muon beam is *now*But when can we expect results?

^{*} Far from an exhaustive list!

CC, Kahn, Krnjaic, Rocha, Spitz '23

Whenever we have ν sources (from proton-on-target), there are muons Consider Mini/MicroBooNE, ESS ν SB, DUNE, etc.

Original purpose: observe neutrino oscillations

Measurement of $\nu_{\mu}N \rightarrow \nu_{\mu}N\pi_0$, $\pi_0 \rightarrow \gamma\gamma$

Possibility for BSM studies?

CC, Kahn, Krnjaic, Rocha, Spitz '23

Whenever we have ν sources (from proton-on-target), there are muons Consider Mini/MicroBooNE, ESS ν SB, DUNE, etc.

High flux of protons \longrightarrow (less) high flux of muons

No muon acceleration needed to probe rare, light new physics

 $Example: Muon-philic \ new \ scalar \ S$

Meson Decays

CC, Kahn, Krnjaic, Rocha, Spitz '23

Whenever we have ν sources (from proton-on-target), there are muons Consider Mini/MicroBooNE, ESS ν SB, DUNE, etc. High flux of protons \longrightarrow (less) high flux of muons

No muon acceleration needed to probe rare, light new physics

Example: Muon-philic new scalar S

 μ production $\rightarrow S$ production

CC, Kahn, Krnjaic, Rocha, Spitz '23

Whenever we have ν sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESS\(\nu\)SB, DUNE, etc.

High flux of protons \longrightarrow (less) high flux of muons

No muon acceleration needed to probe rare, light new physics

Example: Muon-philic new scalar S

Beam already exists

Data was already taken

Detector already exists

CC, Kahn, Krnjaic, Rocha*, Spitz '23

Whenever we have ν sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESS\(\nu\)SB, DUNE, etc.

High flux of protons — (less) high flux of muons

 $Example: Muon-philic \ new \ scalar \ S$

$$\mathcal{L}_{int} \supset yS\mu\bar{\mu}$$

$$S \longrightarrow \mu$$

$$\gamma$$

The time to think about other ways we can use a muon beam is *now*But when can we expect results?

^{*} Far from an exhaustive list!

NEUTRINOS FROM MUON BEAMS

NuSTORM '23

Assuming we do modular R&D, there is a muon surplus (Still no acceleration)

3 GeV μ circulate and decay

Large ν beam with smallest uncertainty ΔE_{ν} yet

Enables precision measurements of neutrino cross sections & nuclear effects

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Assume we have *slight* acceleration of muons

What can we do with a muon beam $(\mu^+ \text{ or } \mu^-)$ with moderate energy and intensity?

Probe kinda rare, sorta light new physics with beam dumps

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Beam dumps are economical auxiliary experiments with complementary physics reach to the full collider

...but enhancement on σ (Avogadro's Number $\sim 6 \times 10^{23}$

Generic BSM Model:

$$\mathcal{L}_{int} \supset \frac{1}{2} \partial_{\mu} X^2 - \frac{1}{2} m^2 X^2 + ig_X \mathcal{O}_{\bar{f}fX}$$

Consider several models at various energies...

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:

Length of experiment, target size, target material...

Parameters not yet fixed or understood: Number of μOT , energy $E_{\mu}...$

So, let's sweep through some theory & experiment options

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:

Length of experiment, target size, target material...

Parameters not yet fixed or understood: Number of μOT , energy E_u ...

Example:
10 GeV Beams
Muon-philic NP

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:

Length of experiment, target size, target material...

Parameters not yet fixed or understood: Number of μOT , energy $E_{\mu}...$

Example:
63 GeV Beams
Leptophilic NP

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:
Length of experiment, target size, target
material...

Parameters not yet fixed or understood: Number of μOT , energy $E_{\mu}...$

Example: 10 GeV Beams $L_u - L_\tau$ model

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:

Length of experiment, target size, target material...

Parameters not yet fixed or understood: Number of μOT , energy E_{μ} ...

The time to think about other ways we can use a muon beam is *now*But when can we expect results?

Neutrino long baseline

Low-energy beam dump

^{*} Far from an exhaustive list!

HIGH-ENERGY MUON BEAM DUMP

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Consider Full MuC energies (3 TeV, 10 TeV stages)

 $\mathcal{L} \sim n_{\mu}^2$ — number density of muons per bunch

Could be advantageous to dump beam and inject more frequently

HIGH-ENERGY MUON BEAM DUMP

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Consider Full MuC energies (3 TeV, 10 TeV stages)

$$\mathcal{L} \sim n_{\mu}^2$$
 — number density of muons per bunch

Could be advantageous to dump beam and inject more frequently

HIGH-ENERGY MUON BEAM DUMP

CC, Homiller, Mishra, Reece '22 · CC, Gambhir* '23

Consider Full MuC energies (3 TeV, 10 TeV stages)

 $\mathcal{L} \sim n_{\mu}^2$ — number density of muons per bunch

Could be advantageous to dump beam and inject more frequently

HIGH-ENERGY NEUTRINO BEAMS

Putnam, Kamp '25 (to appear)

Consider Full MuC energies (3 TeV, 10 TeV stages)

Orient straight sections to point towards a neutrino detector

Angular width of beam
$$\sim \frac{1}{\gamma}$$
, $\mathcal{O}(100m)$

HIGH-ENERGY NEUTRINO BEAMS

Putnam, Kamp '25 (to appear)

Consider Full MuC energies (3 TeV, 10 TeV stages)

Orient straight sections to point towards a neutrino detector

Angular width of beam $\sim \frac{1}{\gamma}$, $\mathcal{O}(100m)$

Used to study BSM ν oscillations

Ex: sterile neutrinos

OUTLOOK FOR MUON BEAMS

There are two fundamentally novel features of muon beams: 2nd generation particles, potentially high energy

Progress in muon beam technology comes in stages which we can utilize as available

Now is the time to include auxiliary concepts in full design

Continue to think about synergies in ν measurements, precision measurements, flavor violation, and more!