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PHYSICS WITH MUON BEAMS

Before we collide muons, we accelerate them.

Why is this interesting?

Proton Driver Front End Cooling Acceleration Collider Ring
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Reason 1: A high-energy & intense beam of muons has never been realized

Reason 2: A muon beam may be available before the tull collider
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Reason 1: A high-energy & intense beam of muons has never been realized

Reason 2: A muon beam may be available before the tull collider

We are in the business of long time scale, exploratory science programs:
How can we utilize muon beams at all stages of development?
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Muon beam experiments have been used to study...

Properties of the muon Nuclear structure Material Science
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SUMMARY OF MUON BEAM EXPERIMENTS

Muon beam experiments have been (will be) used to study...

Properties of the muon Nuclear structure Material Science
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Reminder: all these are also probes of new physics



NOT-ACCELERATED MUON BEAMS

Where do these muon beams come from?

Capture of tertiary particles in the right momentum range
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NOT-ACCELERATED MUON BEAMS

Where do these muon beams come from?

Capture of tertiary particles in the right momentum range

T — UU U Back-scattered
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MUON COLLIDER (MUC) & MUON BEAM

The time to think about other ways we can use a muon beam is now

1. Full scale collider operation is several decades out, even if all goes well

2. R&D is highest priority, and will produce a muon beam

3. We can have physics deliverables well before the collider comes online
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We might miss opportunities by not considering auxiliary experiments from the get-go
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MUON BEAM AT MUC TIMELINE

The time to think about other ways we can use a muon beam is now

But when can we expect results?

2025 2030s... 20507

Now Soon Future
Existing beams R&D products Full Collider Beam
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MUON BEAM AT MUC TIMELINE

The time to think about other ways we can use a muon beam is now

But when can we expect results?

2025

Now

Existing beams

Recast data

* Far from an exhaustive list!



BSM WITH EXISTING MUON BEAMS

Whenever we have v sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESSvSB, DUNE, etc.

Original purpose: observe neutrino oscillations

Measurement of v,N — v ,Nmy, 7y — 7y Possibility for BSM studies?



BSM WITH EXISTING MUON BEAMS

Whenever we have v sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESSvSB, DUNE, etc.

High flux of protons — (less) high flux of muons
No muon acceleration needed to probe rare, light new physics

Example: Muon-philic new scalar S
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BSM WITH EXISTING MUON BEAMS

CC, Kahn, Krnjaic, Rocha, Spitz 23
Whenever we have v sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESSvSB, DUNE, etc.

High flux of protons — (less) high flux of muons
No muon acceleration needed to probe rare, light new physics

Example: Muon-philic new scalar S
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BSM WITH EXISTING MUON BEAMS

Whenever we have v sources (from proton-on-target), there are muons

Consider Mini/MicroBooNE, ESSvSB, DUNE, etc.
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BSM WITH EXISTING MUON BEAMS

CC, Kahn, Krnjaic, Rocha™, Spitz 23

Whenever we have v sources (from proton-on-target), there are muons
Consider Mini/MicroBooNE, ESSvSB, DUNE, etc.

High flux of protons — (less) high flux of muons
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MUON BEAM AT MUC TIMELINE

The time to think about other ways we can use a muon beam is now

But when can we expect results?

2030s...

Soon

R&D products

Neutrino storage ring

Low-energy beam dump

! * Far from an exhaustive list!



NEUTRINOS FROM MUON BEAMS

Assuming we do modular R&D, there is a muon surplus
(Still no acceleration)

Muons to go to R&D

| 6D cooling demonstrator Vps Ve,
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Storage ring
3 GeV u circulate and decay
Large v beam with smallest uncertainty AE  yet

Enables precision measurements of neutrino cross sections & nuclear effects
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LOW-ENERGY MUON BEAM DUMP

Assume we have slight acceleration of muons

What can we do with a muon beam (u™ or y~) with moderate energy and
intensity”?

Probe kinda rare, sorta light new physics with beam dumps

NP produced NP decays

Muon beam

SM wvisible decay

Decay Region

4

Measured
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...but enhancement on o «

LOW-ENERGY MUON BEAM DUMP

Beam dumps are economical auxiliary experiments with complementary physics
reach to the full collider

I | [ — —

Detector

Decay Region

7

L.
Generic BSM Model:
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Consider several models at various

enerqgies...
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LOW-ENERGY MUON BEAM DUMP

(Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized: Parameters not yet fixed or understood:
Length of experiment, target size, target Number of 4OT, energy E,...
material...

S0, let’s sweep through some theory & experiment options

15



LOW-ENERGY MUON BEAM DUMP

(Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized: Parameters not yet fixed or understood:
Length of experiment, target size, target Number of uOT, energy E,...
material...
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LOW-ENERGY MUON BEAM DUMP

(Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized:

Length of experiment,

arge

material...

Example:

63 GeV Beams
Leptophilic NP

Parameters not yet fixed or understood:

Number of yO'T, energy E,...
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LOW-ENERGY MUON BEAM DUMP

(Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized: Parameters not yet fixed or understood:
Length of experiment, target size, target Number of yOT, energy E,...
material...
10-3 Lead Target Li,,=0.5m
. Eg= 10 GeV Ly =5.0:m
- Ly..=10.0 m
104 5 gm.a.:r. = ]0_2
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LOW-ENERGY MUON BEAM DUMP

(Goal: Understand reach of beam dump experiments in NP parameter space

Choices to be optimized: Parameters not yet fixed or understood:
Length of experiment, target size, target Number of 4OT, energy E,...
material...

Even for low energy, much new parameter space is unlocked for muon-specific
couplings
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MUON BEAM AT MUC TIMELINE

The time to think about other ways we can use a muon beam is now

But when can we expect results?

20507

Future
Full Collider Beam

High-energy beam dump

Neutrino long baseline

19 * Far from an exhaustive list!



HIGH-ENERGY MUON BEAM DUMP

Consider Full MuC energies (3 TeV, 10 TeV stages)

L~ n/f — number density of muons per bunch

Could be advantageous to dump beam and inject more frequently

20



HIGH-ENERGY MUON BEAM DUMP

Consider Full MuC energies (3 TeV, 10 TeV stages)

P ~ n?

H
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HIGH-ENERGY MUON BEAM DUMP

Consider Full MuC energies (3 TeV, 10 TeV stages)

L~ n/f — number density of muons per bunch

Could be advantageous to dump beam and inject more frequently

High energy can push to lower couplings because the particle lifetime is extended

R lexp ~ Y70
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HIGH-ENERGY NEUTRINO BEAMS

Putnam, Kamp 25 (to appear)
Consider Full MuC energies (3 TeV, 10 TeV stages)

Orient straight sections to point towards a neutrino detector
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HIGH-ENERGY NEUTRINO BEAMS

20/ |ceCube

Putnam, Kamp 25 (to appear)

Consider Full MuC energies (3 TeV, 10 TeV stages)

Orient straight sections to point towards a neutrino detector
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Used to study BSM v oscillations
Ex: sterile neutrinos
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OUTLOOK FOR MUON BEAMS

2025 2030s... 20507
Now Soon Future
Existing beams R&D products Full Collider Beam

There are two fundamentally novel features of muon beams: 2nd generation
particles, potentially high energy

Progress in muon beam technology comes in stages which we can utilize as available

Now is the time to include auxiliary concepts in full design

Continue to think about synergies in v measurements, precision measurements, flavor
violation, and more!
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