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Experimental Parallel Sessions

o 13 talks and 2 discussions covering performance, instrumentation, and computing.
o Many new studies and new results presented this year!

@ Can't summarize everything, but recordings of all parallel sessions available on indico.
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Performance Highlights

@ Increasingly moving to more realistic modeling of our detector!
o More precise modeling of low-energy BIB neutrons; more realistic tracker digitization.

The default dd4HEP+GEANT4 configuration in MuCollSoft uses the QGSP_BERT physics list
How does QGSP_BERT model neutron interactions?

= G4 elastic had. scattering process
ariant PS elastic model (0eV — 100 TeV)
» Cross sections: G4ElasticXs

Muon Collider MuColl_yv1
Simulation, ECAL
Neutron pr = 10 MeV.

N
]

neutroninelastic = nuclear excitation + spallation interactions
» Interpolation between BertiniCascade neutron-nucleon + seconda
production model (0—6GeV), FTFP (3GeV—25GeV), and QGSP (>12 GeV)
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nCapture = discrete radiative neutron capture 000+ gr'::rg'i';; -
+ Nuclear recoil and y release modeled by nRadCapture apture) =T
- c tions: G4NeutronCaptureXS O s e
Toss sections: P! BCH, depth (% NIL)
+ Butthese rely on ized rather than data-dri ~ fail at low energies

Neutrons at <20 MeV need QGSP_BERT_HP to properly describe (in)elastic scattering, capture, fission, and radioactive decay

I We need HP to fully ibe I gy neutron ior! ]
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https://indico.uchicago.edu/event/479/contributions/2061/attachments/802/1349/Dervan_USMCC_2025.pdf
https://indico.uchicago.edu/event/479/contributions/2063/attachments/816/1297/ARastogi_USMCC_Aug2025.pdf

Discussion: Neutrinos and Data Rates

e Significant rate of beam-induced neutrinos (BINs): neutrino showers in detector!
e Much higher rates than most processes: additional detector challenge (and opportunity?).
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https://indico.uchicago.edu/event/479/contributions/2063/attachments/816/1297/ARastogi_USMCC_Aug2025.pdf
https://indico.uchicago.edu/event/479/contributions/2062/attachments/801/1269/neutrino_slice_discussion.pdf

Instrumentation Highlights: Timing

@ Lots of work on high-granularity timing detectors in HEP (Jennifer Ott, Artur Apresyan):
Real-time compensated 1km

optical clock link
Summary Preliminary )

125 Drift measured
« Considering the muon collider baselines, requirements, aspirations: neither spatial 100 with backend
resolution nor timing resolution are overly strenuous ’ Phase Detector
* 30-60 ps are being achieved with DC-LGADs developed for the HL-LHC, assuming high radiation 5 15 i
levels! &
& 50
* Using precision timing to identify vertices and reconstruct tracks, separate collision 8 stabiized
data from beam backgrounds is tempting (required) — but keep in mind that this is 25 o
being done in software, the detector itself will still experience the full hit rate 0 P v / h
+ E.g.resistive silicon detectors will not do well in a high-occupancy environment Ground Truth
25 Phase Detector v
== y
» Consider the big picture and operational constraints: availability of detector process 7000 8000 9000 10000 11000 12000
lines, uniformity of large sensors, ... Time (=)
> Further specify (through simulations and modelling) critical performance parameters to Stabilization Characteristics:
select or develop the optimal semiconductor sensor technology Std.Dev ~ 120 fs
o Peak to Peak ~ 650 fs
ennifer Ott
Avg. Over ~ 5s (0.2Hz)

Rohith Saradhy
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https://indico.uchicago.edu/event/479/contributions/2093/attachments/852/1359/JOtt_muC_LGADs.pdf
https://indico.uchicago.edu/event/479/contributions/2092/attachments/846/1351/4D-trackers-Apresyan-MuC2025.pdf
https://indico.uchicago.edu/event/479/contributions/2093/attachments/852/1359/JOtt_muC_LGADs.pdf
https://docs.google.com/presentation/d/1LP-eoqofTEO9m8uU8FCcdEnfHT6Bjzi_Kdhj_-hP97U/edit?usp=sharing

Instrumentation Highlights: Forward Muons

e To begin to address some of the feasibility questions, we initiated a GEANT-4

feasibility study of a downstream muon spectrometer
o In contrast to instrumenting the nozzle (challenging with BIB!), and to provide magnetic bending
o Also studied TeV muon scattering and energy loss in the tungsten shielding cone (covers |n|>2.4)
e Explored using an (ATLAS) endcap toroidal magnet design as a realistic
strawman design
o Largish opening to accommodate beam line components, and with less B field impact on beam
Study muon tagging and momentum measurements, and the impact on physics measurements

ATLASPHOTO-2022:007-6 Layout adapted from Collamati et al. on p*y- collider: arXiv:2105.09116
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https://indico.uchicago.edu/event/479/contributions/2094/attachments/847/1353/FwdMuonAndLumi.pptx

Computing Resources
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Generation Simulation Overlay Digitization Reconstruction v
L « Particle interaction * Add beam-induced « Electronics + High-level objects: |
interactions w/ passive & active background response in each tracks, vertices, P,
+ beam-induced detector elements SimHits to 'y sub-detector jets, muons, andoca o BIg:
backgrounds - SimHits interaction events - RecHits electrons, efc. 19 nstances of .
Tatehin ek - cluster
Expected computational intensity of each step: e instances of chiste
. clustey,
A imvalving  double 1.,,;:3
Inexpensive at LO;  FullSim is intensive; ~ Potentially most Linear scaling w/ ~Quadratic 2
N"LO can be much  FastSim (Delphes) is  expensive step # hits (superlinear) scaling —
more intensive cheap (BIB simulation £: GPU porting? w/ # hits (classically)
£: negative weight 2: GPU-based in particular) AP: Smart reduction,
reduction, GPU- simulation; £: premixing, ~linear time ML
based g ive ML g ive ML clustering

Gregory Penn
Kevin Pedro
@ Running full simulation+reconstruction with BIB very expensive! Lots to optimize:
o Epecially tracking. Where can we apply ML? (Abhijith Gandrakota, Rocky Bala Garg).
e Should explore generative ML approach to full BIB simulation!
o Need to provide updated fast simulation infrastructure for 10 TeV detectors.
o In many cases fastsim will be good enough; still need to be able to run full simulation.
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https://indico.uchicago.edu/event/479/contributions/1995/attachments/794/1258/Computing%20Resources%20and%20Challenges%20USMCC.pdf
https://indico.uchicago.edu/event/479/contributions/2059/attachments/804/1272/PFlow_Penn_USMCC.pdf
https://indico.uchicago.edu/event/479/contributions/1994/attachments/829/1363/AIML_MuC_Abhijith.pdf
https://indico.uchicago.edu/event/479/contributions/1993/attachments/851/1358/USMCC_Tracking_RBG.pdf
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