

Particle Flow in a $\mu\mu$ Environment: The Pandora Algorithm

Gregory Penn Yale University

What is Particle Flow?

- Traditional Calorimetry:
 - Not all stable particles are identified
 - Jets: measure energy entirely in calorimeter
 - High reliance on poor HCal resolution
- Particle Flow: Coherently combine information from all detector components
 - Identify all stable particles in an event
 - Jets are formed from list of particles
- Advantages of Particle Flow:
 - Use tracker measurement to measure charged particles
 - More natural for substructure measurements
- Disadvantages of Particle Flow:
 - Requires high granularity detectors
 - The reconstruction software becomes complicated

Traditional Calorimetry

$$E_{JET} = E_{ECAL} + E_{HCAL}$$

Particle Flow

$$E_{JET} = E_{TRACK} + E_{\gamma} + E_{n}$$

Images from [1]

The Pandora Particle Flow Algorithm

- Designed for detectors (ILD) at a linear e^+e^- collider (ILC, $\sqrt{s} \sim 500$ GeV)
 - Extended to detectors at CLIC ($\sqrt{s} = 3 \text{ TeV}$)
- It reads and accounts for calorimeter parameters → flexible!

Event Preparation

- · Track selection
- · Calorimeter hit selection

Clustering

- 1. Photon Clustering
- 2. Fast photon ID
- 3 Main clustering
- 4 Topological merging
- 5. Reclustering
- 6. Photon recovery + ID
- 7. Fragment removal

Particle Flow Object Creation

Pandora requires tweaking and/or reworking to perform optimally in a 10 TeV muon collider

Pandora: Event Preparation

- Track selection
 - $\frac{\sigma(p_T)}{p_T}$ requirement to match to clusters
- Calorimeter hit selection
 - Categorization for isolated hits to be excluded from clustering
 - MUSIC: Reject hits with < 3 other hits in the neighboring 3x3 detector cell matrix * NAIA study

Pandora: Cone Clustering Algorithm

- First seeds clusters with tracks projected to ECal face
- Then seeds clusters with remaining hits, beginning at innermost layers
- Work from inner layer of ECal, iteratively adding hits outward through calorimeter
- Errs on the side of forming smaller clusters. Easier to put things together than to split them up.

Pandora: Clustering

- Fast photon ID
- Cone clustering
- Topological cluster merging algorithms
- Recluster to achieve better track cluster consistency
- Photon recovery and fragment removal
- **50 GeV jets:** Frag. Rem. and Topo. Merging are important
- **250 GeV jets:** Reclustering is the most important

Topology - based cluster merging

ILD

Algorithm	Jet Energy Resolution $rms_{90}(E_j)/E_j$ [%]				
	E_j =45 GeV	E_j =100 GeV	E_j =180 GeV	E_j =250 GeV	
Full PandoraPFA	3.74 ± 0.05	2.92 ± 0.04	3.00 ± 0.04	3.11 ± 0.05	
a) No Topological Clustering	4.02 ± 0.05	3.25 ± 0.04	3.52 ± 0.05	3.67 ± 0.06	
b) No Reclustering	3.83 ± 0.05	3.30 ± 0.04	3.91 ± 0.05	4.19 ± 0.07	
c) No Photon Clustering Stage	3.66 ± 0.05	2.99 ± 0.04	3.13 ± 0.04	3.31 ± 0.05	
d) No Fragment Removal	4.05 ± 0.05	3.21 ± 0.04	3.25 ± 0.04	3.40 ± 0.06	
e) No V ⁰ /Kink Tracks	3.78 ± 0.05	2.96 ± 0.04	3.02 ± 0.04	3.13 ± 0.05	

Potential HC study

arXiv:<u>0907.3577</u>

Pandora: Clustering

- Fast photon ID
- Cone clustering
- Topological cluster merging algorithms
- Recluster to achieve better track cluster consistency
- Photon recovery and fragment removal
- **50 GeV jets:** Frag. Rem. and Topo. Merging are important
- 250 GeV jets: Reclustering is the most important

Topology - based cluster merging

ILD

Algorithm	Jet Energy Resolution $rms_{90}(E_j)/E_j$ [%]				
	E_j =45 GeV	E_j =100 GeV	E_j =180 GeV	E_j =250 GeV	
Full PandoraPFA	3.74 ± 0.05	2.92 ± 0.04	3.00 ± 0.04	3.11 ± 0.05	
a) No Topological Clustering	4.02 ± 0.05	3.25 ± 0.04	3.52 ± 0.05	3.67 ± 0.06	
b) No Reclustering	3.83 ± 0.05	3.30 ± 0.04	3.91 ± 0.05	4.19 ± 0.07	
c) No Photon Clustering Stage	3.66 ± 0.05	2.99 ± 0.04	3.13 ± 0.04	3.31 ± 0.05	
d) No Fragment Removal	4.05 ± 0.05	3.21 ± 0.04	3.25 ± 0.04	3.40 ± 0.06	
e) No V ⁰ /Kink Tracks	3.78 ± 0.05	2.96 ± 0.04	3.02 ± 0.04	3.13 ± 0.05	

: computationally expensive!

Potential HC study

arXiv:0907.3577

μμ: Other Clustering Algorithms

- BIB creates a high detector occupancy, particularly in the first few layers in the Ecal
- Forward-projective clustering algorithm starts in the busiest environment
- Is it better to seed clustering elsewhere?
 - From the back of the HCal, cluster outwards → inwards (Larry Lee, Federico Meloni)

Pandora: Particle Flow Object Creation

- Final track-cluster matching
- Three basic ID algorithms:
 - Muons
 - Photons
 - Neutral hadrons are neutral PFOs that are not photons
 - Electrons
 - π^{\pm} are charged PFOs that are not electrons
- Algorithms aren't necessarily suitable for our environment ★
 - Expected electron profile independent of heta
 - Not the case for MAIA!

O determines how many Xo of solenoid (A1) particle traverses through (MAIA)

$\mu\mu$: Simplified Versions of Pandora

- It can take 1 day to reconstruct a single event with BIB using Pandora
- Increasing effort to run with a subset of Pandora algorithms
- Main benefit: can lead to ~10x speed-up with BIB

Simplified Pandora: Charged Pions (MAIA)

Track Selection + Hit Preparation + Cone Clustering + Resolve Track Associations + PFO Identification

consistency requirements define isolated hits algorithm

Algorithm

Resolve Track Associations + PFO Identification

Track Selection + Hit Preparation + Cone Clustering + Resolve Track Associations + PFO Identification

Track Selection + Hit Preparation + Cone Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Associations + PFO Identification

**One Clustering + Resolve Track Association

**One Clustering + Resolve T

Simplified Pandora: Electrons (MUSIC)

0.6

0.2

0

50

100

150

Muon Collider Simulation, with BIB+IPP EU24 lattice, √s=10TeV

200

True electron p₋ [GeV]

250

There are also challenges
for any Particle Flow
algorithm at a 10 TeV

Hty Collider.

Interpretation of PFlow Performance

- Particle flow performance parameterized into two components:
 - Intrinsic energy resolution
 - Confusion term
- Confusion dominates particle flow performance at high jet energies
 - Separation of particles within jet decreases
- Poses challenge for $\sqrt{s} = 10 \ TeV \ \mu\mu$ collider!

Reconstruct fragments as separate neutral hadrons

Confusion term: CLIC

- Confusion term has been studied at CLIC ($\sqrt{s} = 3 \, TeV$)
- Solution: Transition from particle flow to energy flow
 - Neutral hadrons identified as excesses of energy, not directly reconstructed
- At what E_{jet} scale do we become dominated by the confusion term? \star HC study
- Will a transition to energy flow help? * Potential µC study

 Do we have to rely on high-momentum tracking?

Outlook

- Pandora is an excellent starting tool, but needs significant re-thinking to operate under BIB environment
- Physics goal for in $\sqrt{s}=10~TeV~\mu\mu$ collider: Study of 4-5 TeV W / Z / H
 - Boosted topology → narrow, overlapping jets → challenging environment for any particle flow algorithm
- Optimal performance comes from combining efforts across many fronts

Backup

Pandora: Links to Code

- Event preparation:
 - Track selection (<u>code</u>)
 - Calorimeter hit selection (<u>code</u>)
- Clustering:
 - Fast photon clustering and ID (<u>code</u>)
 - Cone clustering (<u>code</u>)
 - Topological cluster merging (<u>code</u>)
 - Reclustering (<u>code</u>)
 - Photon recovery (<u>code</u>)
 - Fragment Removal (<u>code</u>)
- PFO Identification:
 - Electrons (<u>code</u>)
 - Photons (<u>code</u>)
 - Muons (code)
- Rough instructions for local installation of Pandora (<u>link</u>)

Topological Cluster Merging Algorithms

- i) Looping track segments (code)
- ii) Track segments with gaps (code)
- iii, iv) Track segments pointing to hadronic showers
 - (code1, code2, code3, code4)
- v) Back-scattered tracks from hadronic showers (<u>code1</u>, <u>code2</u>)
- vi, vii) Neutral clusters nearby a charged shower (code)
- viii) Cone association (code)
- ix) Recovery of photons which overlap with track segment (code)

Not all should occur in MAIA or MUSIC!

E.g., no looping tracks in MAIA

Arrows: Tracks

Filled dots: Hits in charged cluster Open dots: Hits in neutral cluster

Example of Confusion: MAIA

- \sqrt{s} = 10 TeV $\mu^-\mu^+ \rightarrow ZH \rightarrow 4b$
- "True Jet": Sum status = 1 particles within ΔR < 0.8 of H / Z
- "Rec Jet": Sum of calorimeter hits within ΔR < 0.8 of H / Z
- "Clus jet": Sum of Pandora clusters within ΔR < 0.8 of H / Z
- "PFO jet": Sum of Pandora PFOs within $\Delta R < 0.8$ of H / Z
- Clear demonstration of Particle Flow confusion in our environment

High Momentum Tracking

- Particle flow relies on precise tracking measurement
- But tracking resolution decreases as a function of energy
- MAIA: With BIB, ECal (HCal) precision surpasses tracking at ~ 400 GeV (3.4 TeV)
- Does it make sense to always use the track as the measurement for charged PFOs? Other options? * μC stud

