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Introduction
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What is MAIA?
- Muon Accelerator Implemented Apparatus
- One of two detector concepts proposed for a 

Muon Collider at √𝑠=10 TeV
- Composed of shielding nozzles, trackers, a 5T 

solenoid, calorimeters, and a muon system

Why are calorimeters important?
- The electromagnetic and hadronic 

calorimeters are designed to stop EM and 
hadronic particles, respectively, and measure 
their energy

- 5D calorimetry—information about energy, 
timing, and position

Why and how do we calibrate our calorimeters?
- Accurate energy measurements are crucial to reconstruction

- Particle ID
- Identifying missing energy
- Finding resonances

- We can assess the calorimeters’ performance with the simplest 
neutral objects (photons and neutrons) as standard candles



MAIA Calorimeters
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Interaction Point

ECAL:
- Silicon and Tungsten
- 5x5 mm2 cells
- 50 layers 

HCAL:
- Iron and scintillator
- 30x30 mm2 cells
- 75 layers

Cross-section of the first quadrant of the MAIA 
detector in the RZ plane, focusing on the solenoid 
and calorimeters.

[1] arXiv:2502.00181

Tracking Detectors

https://arxiv.org/abs/2502.00181


The solenoid: BIB bodyguard or black box?
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The solenoid adds approximately 265 mm of 
aluminum between the trackers and the 
calorimeters. Two interpretations…

265 mm of additional shielding, 
drastically reducing BIB occupancy in 
the calorimeters!

265 mm of detector-free material 
where particles interact and lose 
energy.

Comparison of BIB energy density deposition in ECAL 
for different solenoid placements.

Event display showing a pion showering in the solenoid. 
Plot courtesy of Tova Holmes.

[1] arXiv:2502.00181

https://arxiv.org/abs/2502.00181


Material interactions in the solenoid
Photons lose energy via electromagnetic showers

• Cascade of pair production, Bremsstrahlung, and e+/e- 
annihilation

Neutrons lose energy via hadronic showers
• Cascade of nuclear processes, collisions,
and EM showers
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Both EM particles and 
hadrons can shower in 
aluminum, resulting in 
energy loss between the 
trackers and the 
calorimeters.

Figure from [2]

https://indico.cern.ch/event/1240241/sessions/476218/attachments/2787781/4860875/StGervais2024.pdf


𝜃1

𝜃2

Analytical energy loss function

Let’s take an analytical approach to EM showering
• Much simpler to model than hadronic showering

We derive energy response shape as a function of:
• Geometric parameters of detector
• Photon polar angle
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Number of Radiation Lengths in Al

𝑁 𝜃 =  ൞

0 𝜃 < 𝜃1

 (𝑍0| sec 𝜃 | − 𝑅0 csc 𝜃 )/𝑋0  𝜃1 < 𝜃 < 𝜃2

𝑅𝑓 − 𝑅0 csc 𝜃 /𝑋0  𝜃 > 𝜃2

𝐸0/𝐸𝑓 ∝ 2𝑁(𝜃)R0

Rf

Z0

Radiation length X0 = 8.89 cm



Indeed, the theta-dependence of photonic 
energy response follows this form…
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… but theta-dependence is not the whole story.

Response is also 
energy dependent—
higher-energy particles 
lose fractionally less 
energy in the material.



Stochasticity of showering
Unlike geometric theta dependence, energy dependence of response is highly 
nontrivial to model.

• Our 2𝑁(𝜃) functional form assumes immediate showering
• At high energies, may see MIP-like behavior or stochastically delayed 

showering
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Bottom line: we cannot rely on a 
realistic analytical calibration.

𝑋0 2𝑋0 3𝑋0
Cartoon of three particles beginning to shower at (a) the 
entrance to the solenoid, (b) after two interaction lengths, 
and (c) not at all.

(a)
(b)

(c)



2D response as calibration function
In lieu of an analytical calibration, we can use the response plots 
themselves as calibration matrices. 
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Photon energy response as a function of 
reconstructed energy and azimuthal angle.

Analogous plot for neutrons.

For instance, a photon 
reconstructed with 350 GeV < E < 
400 GeV and 2.1 < 𝜃 < 2.2 would 
be multiplied by the value of this 

bin.



Calibrated fractional response
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Two examples of the binned 
Δ𝐸

𝐸𝑡𝑟𝑢𝑒
 distribution for photons 

in an inclusive 𝜃 range, both 
before and after 2D response 
calibration is applied. 

Calibration effectively 
eliminates bimodality due to  
geometric effects.



But is this really a valid approach?
These response plots take the arithmetic mean in each bin

• Works well in bins with Gaussian distributions…
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But is this really a valid approach?
These response plots take the arithmetic mean in each bin

• However, is susceptible to outliers
• Especially troublesome in low-N or wide-range regions
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peak due to outliers. 
Especially salient in the 
transition region where 
𝑁(𝜃) varies greatly.



Alternative methods
A robust calibration method should not be susceptible to the 
influence of outliers.
• Fitting binned response distributions 

• Many bins exhibit near-Gaussian peaks: fitting those peaks would give a 
more stable mean

• A dedicated large-statistics calibration dataset 
• Could also stabilize and allow us to bin calibration matrix more finely

• A detailed study of particles’ interactions in the solenoid
• Might make an interesting tangential investigation with applications in 

detector performance studies→opportunities here to get involved!
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Conclusions and outlook

Calibration cannot completely remove stochastic broadening of 
energy response due to the solenoid.
• However, a 2D response-based calibration can mitigate the most salient 

geometrical and energetic dependencies
• A more nuanced assessment of binned response may further improve 

accuracy of calibration
• While the solenoid adds challenges to the calibration process, these 

challenges can largely be mitigated and are far outweighed by the solenoid’s 
BIB reduction efficacy
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