Muon Collider: Probing Anomalous Quartic Gauge Couplings

Yu-Chen Guo

Collaboration with Ji-Chong Yang, Tong Li

LNNU & PITT PACC

2nd Annual US Muon Collider Meeting University of Chicago, Aug, 07, 2025

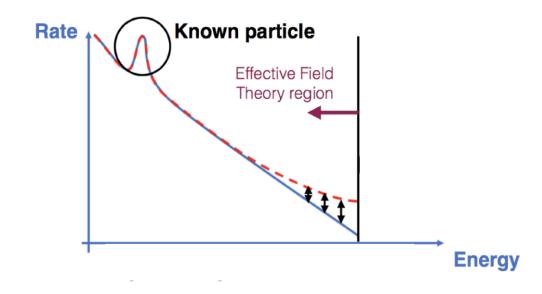
Where to next?

Evidences for physics beyond the Standard Model

- Dark matter, Baryon asymmetry, Neutrino masses, Dark energy, ...
- Hierarchy, Naturalness, Fine tuning problem, ...

• We haven't found any new particles!

- Build an even larger collider → go to high energy → discover new particles!
- Do precision measurements → discover new physics indirectly!


Direct and Indirect Searches for BSM

How do we interpret the measurement results?

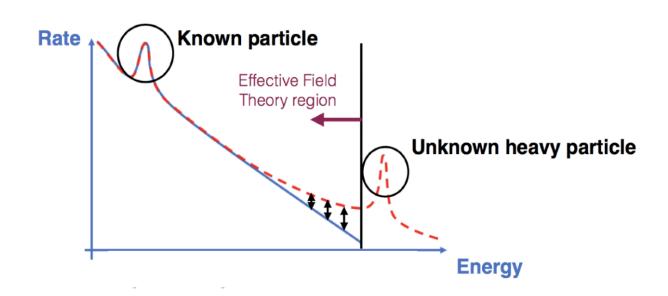
Model-dependent

SUSY, 2HDM...

New particles

Deviations in tails

Direct and Indirect Searches for BSM


How do we interpret the measurement results?

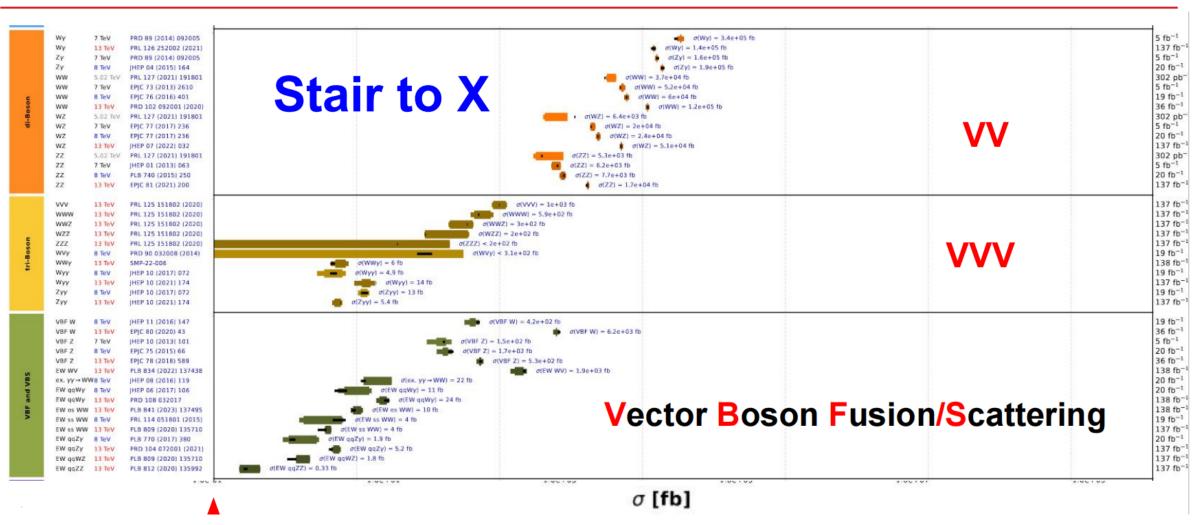
Model-dependent

Model-Independent

SUSY, 2HDM...

New particles

Simplified models, EFT


New Interactions of SM particles

anomalous couplings

Deviations in tails

Multiboson as a key tool

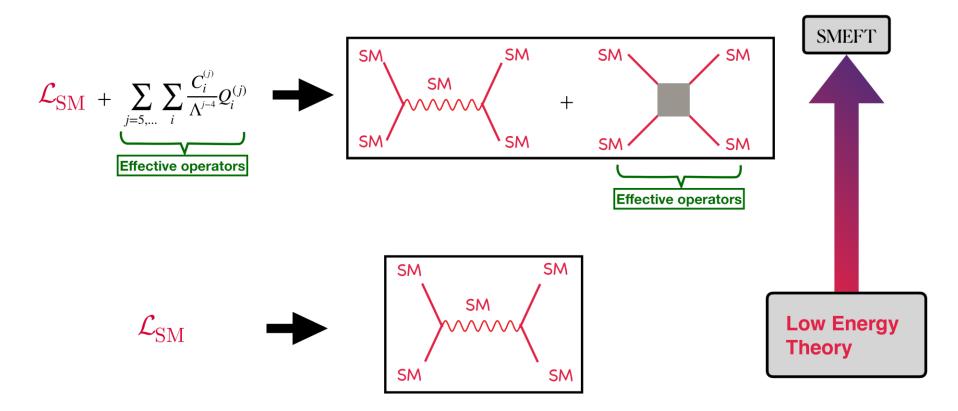
Rich Results from Multiboson Measurements

The LHC can also be seen as a Large Boson Collider

MuC: Great Potential to explore unknown

High energy. High multiplicity. High opportunities ?

opportunities for both theorists (T) & experimentalists (E)


- ✓ high multiplicity processes
 (T: amplitudes, MC; E: trackers, machine learning)
- ✓ Transverse vs Longitudinal vectors
 (T: massive amplitudes E: reconstruction)
- ✓ optimizing search analyses
- √ global fit

Machines beyond LHC → more energy → better sensitivity

MuC: The large boson-boson collider

The Standard Model Effective Field Theory

EFT: Bottom-Up approach with general parameterization

Dimension-8 Operators

anomalous Quartic Gauge Couplings (aQGC)

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{SM} + \sum_i rac{C_{6i}}{\Lambda^2} \mathcal{O}_{6i} + \sum_j rac{C_{8j}}{\Lambda^4} \mathcal{O}_{8j} + \dots$$

$$\mathcal{L}_{aQGC} = \sum_{i=0}^{2} \frac{f_{S_i}}{\Lambda^4} O_{S_i} + \sum_{j=0}^{7} \frac{f_{M_j}}{\Lambda^4} O_{M_j} + \sum_{k=0}^{9} \frac{f_{T_k}}{\Lambda^4} O_{T_k}$$

$$O_{S_0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right],$$

$$O_{S_1} = \left[(D_{\mu} \Phi)^{\dagger} D_{\mu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right],$$

$$O_{S_2} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\nu} \Phi)^{\dagger} D^{\mu} \Phi \right],$$

$$O_{T_0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right],$$

$$O_{T_1} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right],$$

$$O_{T_2} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right],$$

$$O_{T_5} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta},$$

$$O_{T_6} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu},$$

$$O_{T_7} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha},$$

$$O_{T_8} = B_{\mu\nu} B^{\mu\nu} \times B_{\alpha\beta} B^{\alpha\beta},$$

$$O_{T_9} = B_{\alpha\mu} B^{\mu\beta} \times B_{\beta\nu} B^{\nu\alpha},$$

$$O_{M_0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right],$$

$$O_{M_1} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\nu\beta} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right],$$

$$O_{M_2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right],$$

$$O_{M_3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right],$$

$$O_{M_4} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu},$$

$$O_{M_5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} D_{\nu} \Phi \right] \times B^{\beta\mu} + h.c.,$$

$$O_{M_7} = \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} \widehat{W}_{\beta\mu} D_{\nu} \Phi,$$

Dimension-8 Operators

gluonic Quartic Gauge Couplings (gQGC)

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{SM} + \sum_i rac{C_{6i}}{\Lambda^2} \mathcal{O}_{6i} + \sum_j rac{C_{8j}}{\Lambda^4} \mathcal{O}_{8j} + \ldots$$

$$\mathcal{O}_{gT,0} \equiv \sum_{a} G^{a}_{\mu\nu} G^{a,\mu\nu} \times \sum_{i} W^{i}_{\alpha\beta} W^{i,\alpha\beta} ,$$

$$\mathcal{O}_{gT,1} \equiv \sum_{a} G^{a}_{\alpha\nu} G^{a,\mu\beta} \times \sum_{i} W^{i}_{\mu\beta} W^{i,\alpha\nu} ,$$

$$\mathcal{O}_{gT,2} \equiv \sum_{a} G^{a}_{\alpha\mu} G^{a,\mu\beta} \times \sum_{i} W^{i}_{\nu\beta} W^{i,\alpha\nu} ,$$

$$\mathcal{O}_{gT,3} \equiv \sum_{a} G^{a}_{\alpha\mu} G^{a}_{\beta\nu} \times \sum_{i} W^{i,\mu\beta} W^{i,\nu\alpha} ,$$

$$\mathcal{O}_{gT,4} \equiv \sum_{a} G^{a}_{\alpha\mu} G^{a,\mu\nu} \times B_{\alpha\beta} B^{\alpha\beta} ,$$

$$\mathcal{O}_{gT,5} \equiv \sum_{a} G^{a}_{\alpha\nu} G^{a,\mu\beta} \times B_{\mu\beta} B^{\alpha\nu} ,$$

$$\mathcal{O}_{gT,6} \equiv \sum_{a} G^{a}_{\alpha\mu} G^{a,\mu\beta} \times B_{\nu\beta} B^{\alpha\nu} ,$$

$$\mathcal{O}_{gT,7} \equiv \sum_{a} G^{a}_{\alpha\mu} G^{a,\mu\beta} \times B^{\mu\beta} B^{\nu\alpha} ,$$

$$\mathcal{L}_{aQGC} = \sum_{i=0}^{2} \frac{f_{S_i}}{\Lambda^4} O_{S_i} + \sum_{j=0}^{7} \frac{f_{M_j}}{\Lambda^4} O_{M_j} + \sum_{k=0}^{9} \frac{f_{T_k}}{\Lambda^4} O_{T_k}$$

"The gluonic QGC is a natural extension of QED Born-Infeld theory, supported by String Theory"

Ellis, Ge. PRL (2018) [1802.02416]

$$\mathcal{L}_{gT} = \sum_{i=0}^{7} \frac{1}{16M_i^4} \mathcal{O}_{gT,i}$$

Born-Infeld Extensions

$$\beta^{2} \left[1 - \sqrt{1 + \sum_{\lambda=1}^{12} \frac{F_{\mu\nu}^{\lambda} F^{\lambda,\mu\nu}}{2\beta^{2}}} - \left(\sum_{\lambda=1}^{12} \frac{F_{\mu\nu}^{\lambda} \widetilde{F}^{\lambda,\mu\nu}}{4\beta^{2}} \right)^{2}} \right]$$

$$\approx -\frac{1}{4} \sum_{\lambda=1}^{12} F_{\mu\nu}^{\lambda} F^{\lambda,\mu\nu} + \frac{1}{32\beta^{2}} \left[\left(\sum_{\lambda=1}^{12} F_{\mu\nu}^{\lambda} F^{\lambda,\mu\nu} \right)^{2} + \left(\sum_{\lambda=1}^{12} F_{\mu\nu}^{\lambda} \widetilde{F}^{\lambda,\mu\nu} \right)^{2} \right] \equiv \mathcal{L}_{SM} + \mathcal{L}_{gT}$$
with a single parameter $\beta \equiv M^{2} \& \mathcal{L}_{gT} = \sum_{\lambda=1}^{7} 2 \frac{1}{2} \mathcal{O}_{gT}$

with a single parameter
$$m{eta} \equiv \mathbf{M^2} \ \& \ \left| \mathcal{L}_{\mathbf{gT}} = \sum_{i=0}^7 \frac{1}{16\beta_i^2} \mathcal{O}_{\mathbf{gT},i} \right|$$

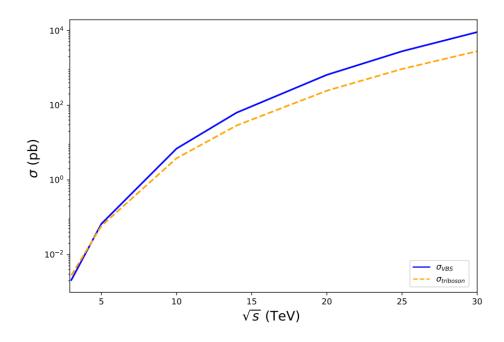
Multi-boson physics studies at MuC

anomalous Quartic Gauge Couplings (aQGC)

- VBS (AA+ $\not E$): $\mu^+\mu^- \rightarrow \gamma\gamma\nu\bar{\nu}$
- VBS (WW+ $\not\!\!E$): $\mu^+\mu^- \rightarrow W^+W\nu\bar{\nu}$
- Triboson (AAA): $\mu^+ \mu^- \rightarrow \gamma \gamma \gamma$

gluonic Quartic Gauge Couplings (gQGC)

• Triboson (AGG): $\mu^+\mu^- \rightarrow \gamma jj$


aQGC: VBS (AA+₺)

• aQGC in the VBS of $W^+W^- \rightarrow \gamma\gamma \ (\gamma\gamma\nu\bar{\nu})$

aQGC: SM:

Y-C G, Feng & Yang, to be uploaded to arXiv

Comparison of **VBS** and **Tri-boson**

When a new particle X is produced, there is a relative scaling

$$\frac{\sigma_{\mathrm{VBF}}^{\mathrm{BSM}}}{\sigma_{\mathrm{ann}}^{\mathrm{BSM}}} \propto \alpha_W^2 \frac{s}{m_X^2} \log^2 \left(\frac{s}{m_V^2} \right) \log \left(\frac{s}{m_X^2} \right)$$

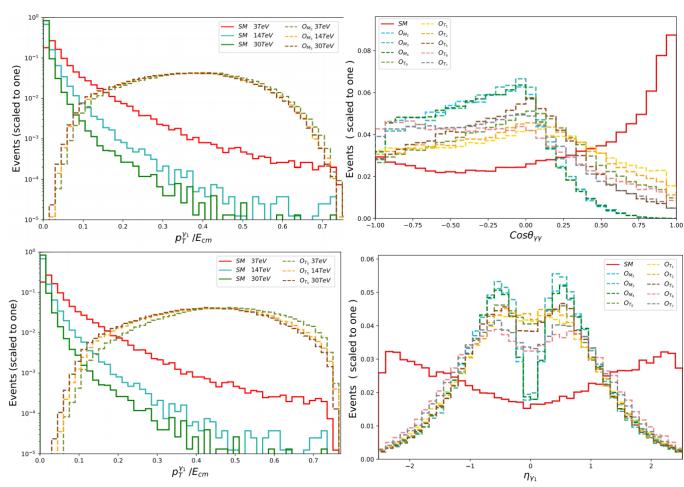
aQGC: VBS (AA+₺)

• aQGC in the VBS of $W^+W^- \rightarrow \gamma\gamma \ (\gamma\gamma\nu\bar{\nu})$

Y-C G, Feng & Yang, to be uploaded to arXiv

Partial-wave Unitary

$$\mathcal{M}(V_{1\lambda_1}V_{2\lambda_2} \to V_{3\lambda_3}V_{4\lambda_4}) = 16\pi \sum_{J} (J + \frac{1}{2})\sqrt{1 + \delta_{V_{1\lambda_1}}^{V_{2\lambda_2}}} \sqrt{1 + \delta_{V_{3\lambda_3}}^{V_{4\lambda_4}}} d_{\lambda\mu}^{J}(\theta, \varphi) e^{iM\varphi} \times T^{J}(V_{1\lambda_1}V_{2\lambda_2} \to V_{3\lambda_3}V_{4\lambda_4})$$


Unitary bounds for VBS process of $W^+W^- \rightarrow \gamma\gamma$

$$\left| \frac{f_{M_0}}{\Lambda^4} \right| \leq \frac{128\sqrt{2}\pi M_W^2}{e^2v^2\hat{s}^2}, \quad \left| \frac{f_{M_1}}{\Lambda^4} \right| \leq \frac{512\sqrt{2}\pi M_W^2}{e^2v^2\hat{s}^2}, \quad \left| \frac{f_{M_2}}{\Lambda^4} \right| \leq \frac{64\sqrt{2}\pi M_W^2 s_W^2}{c_W^2 e^2v^2\hat{s}^2}, \\
\left| \frac{f_{M_3}}{\Lambda^4} \right| \leq \frac{256\sqrt{2}\pi M_W^2 s_W^2}{c_W^2 e^2v^2\hat{s}^2}, \quad \left| \frac{f_{M_4}}{\Lambda^4} \right| \leq \frac{128\sqrt{2}\pi M_W^2 s_W}{c_W e^2v^2\hat{s}^2}, \quad \left| \frac{f_{M_5}}{\Lambda^4} \right| \leq \frac{256\sqrt{2}\pi M_W^2 s_W}{c_W e^2v^2\hat{s}^2}, \\
\left| \frac{f_{M_7}}{\Lambda^4} \right| \leq \frac{1024\sqrt{2}\pi M_W^2}{e^2v^2\hat{s}^2}, \quad \left| \frac{f_{T_1}}{\Lambda^4} \right| \leq \frac{24\sqrt{2}\pi}{s_W^2\hat{s}^2}, \quad \left| \frac{f_{T_2}}{\Lambda^4} \right| \leq \frac{32\sqrt{2}\pi}{s_W^2\hat{s}^2}, \\
\left| \frac{f_{T_5}}{\Lambda^4} \right| \leq \frac{8\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_6}}{\Lambda^4} \right| \leq \frac{24\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_7}}{\Lambda^4} \right| \leq \frac{32\sqrt{2}\pi}{c_W^2\hat{s}^2}, \\
\left| \frac{f_{T_5}}{\Lambda^4} \right| \leq \frac{8\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_6}}{\Lambda^4} \right| \leq \frac{24\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_7}}{\Lambda^4} \right| \leq \frac{32\sqrt{2}\pi}{c_W^2\hat{s}^2}, \\
\left| \frac{f_{T_7}}{\Lambda^4} \right| \leq \frac{32\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_6}}{\Lambda^4} \right| \leq \frac{24\sqrt{2}\pi}{c_W^2\hat{s}^2}, \quad \left| \frac{f_{T_7}}{\Lambda^4} \right| \leq \frac{32\sqrt{2}\pi}{c_W^2\hat{s}^2},$$

	$(\sqrt{s} = 3 \text{ TeV})$	$(\sqrt{s} = 14 \text{ TeV})$	$(\sqrt{s} = 30 \text{ TeV})$
$f_{M_2}/\Lambda^4 \; ({\rm TeV^{-4}})$	[-1.2, 1.2]	[-0.0025, 0.0025]	[-0.00012, 0.00012]
$f_{M_3}/\Lambda^4~({\rm TeV^{-4}})$	[-4.8, 4.8]	[-0.01, 0.01]	[-0.00048, 0.00048]
$f_{M_4}/\Lambda^4~({\rm TeV^{-4}})$	[-4.4, 4.4]	[-0.0093, 0.0093]	[-0.00044, 0.00044]
$f_{T_0}/\Lambda^4~({\rm TeV^{-4}})$	[-1.90, 1.90]	[-0.004, 0.004]	[-0.00019, 0.00019]
$f_{T_1}/\Lambda^4 \; ({\rm TeV^{-4}})$	[-5.69, 5.69]	[-0.012, 0.012]	[-0.00057, 0.00057]
$f_{T_2}/\Lambda^4~({\rm TeV^{-4}})$	[-7.59, 7.59]	[-0.016, 0.016]	[-0.00075, 0.00075]
$f_{T_5}/\Lambda^4~({\rm TeV^{-4}})$	[-0.57, 0.57]	[-0.0012, 0.0012]	[-0.000057, 0.000057]
$f_{T_6}/\Lambda^4~({\rm TeV^{-4}})$	[-1.71, 1.71]	[-0.0036, 0.0036]	[-0.00017, 0.00017]
$f_{T_7}/\Lambda^4~({\rm TeV^{-4}})$	[-2.28, 2.28]	[-0.0048, 0.0048]	[-0.00022, 0.00022]

aQGC: VBS (AA+₺)

Part of the kinematic observables

Compare to 13 TeV LHC:

the expected constraints can be improved by 2~3 orders of magnitude for 14 TeV MuC , and by 4 orders of magnitude for 30 TeV MuC.

Expected aQGC coefficients

		3 TeV	14 TeV	30 TeV
	\mathcal{S}_{stat}	$1 \mathrm{ab}^{-1}$	$10\mathrm{ab^{-1}}$	$10 {\rm ab}^{-1}$
	2	[-0.892, 0.877]	[-0.00758, 0.00462]	[-0.000335, 0.000338]
$\frac{f_{M_2}}{\Lambda^4}$	3	[-1.101, 1.086]	[-0.00909, 0.00612]	[-0.000424, 0.000427]
	5	[-1.444, 1.429]	[-0.0118, 0.00881]	[-0.000582, 0.000585]
	2	[-2.994, 3.379]	[-0.0199, 0.0271]	[-0.000491, 0.00105]
$\frac{f_{M_3}}{\Lambda^4}$	3	[-3.742, 4.128]	[-0.0259, 0.0331]	[-0.000669, 0.00123]
	5	[-4.974, 5.360]	[-0.0365, 0.0437]	[-0.000994, 0.00155]
	2	[-3.085, 3.312]	[-0.0111, 0.0350]	[-0.000491, 0.00145]
$\frac{f_{M_4}}{\Lambda^4}$	3	[-3.837, 4.065]	[-0.0157, 0.0395]	[-0.00108, 0.00173]
	5	[-5.077, 5.304]	[-0.0242, 0.0480]	[-0.00157, 0.00223]
	2	[-0.248, 0.126]	[-0.000653, 0.000374]	[-0.0000499, 0.0000277]
$\frac{f_{T_0}}{\Lambda^4}$	3	[-0.288, 0.166]	[-0.000774,0.000496]	[-0.0000592, 0.0000370]
	5	[-0.355, 0.233]	[-0.000989, 0.000710]	[-0.0000758, 0.0000535]
	2	[-0.209, 0.142]	[-0.000495, 0.000316]	[-0.0000554, 0.0000290]
$\frac{f_{T_1}}{\Lambda^4}$	3	[-0.249, 0.182]	[-0.000603, 0.000423]	[-0.0000654, 0.0000390]
	5	[-0.316, 0.248]	[-0.000804, 0.000624]	[-0.0000833, 0.0000570]
	2	[-0.561, 0.265]	[-0.00118, 0.000613]	[-0.0000695, 0.0000622]
$\frac{f_{T_2}}{\Lambda^4}$	3	[-0.647, 0.351]	[-0.00140, 0.000830]	[-0.0000875, 0.0000801]
	5	[-0.791, 0.495]	[-0.00179, 0.00123]	[-0.000120, 0.000113]
	2	[-0.115, 0.067]	[-0.000271, 0.000134]	[-0.0000158, 0.0000128]
$\frac{f_{T_5}}{\Lambda^4}$	3	[-0.135, 0.087]	[-0.000319, 0.000182]	[-0.0000195, 0.0000165]
	5	[-0.168, 0.120]	[-0.000407, 0.000270]	[-0.0000260, 0.0000229]
	2	[-0.128, 0.114]	[-0.000202, 0.000149]	[-0.0000385, 0.0000254]
$\frac{f_{T_6}}{\Lambda^4}$	3	[-0.156, 0.142]	[-0.000254, 0.000201]	[-0.0000462, 0.0000331]
	5	[-0.203, 0.189]	[-0.000356, 0.000302]	[-0.0000595, 0.0000463]
	2	[-0.317, 0.189]	[-0.000349, 0.000238]	[-0.0000385, 0.0000395]
$\frac{f_{T_7}}{\Lambda^4}$	3	[-0.374, 0.245]	[-0.000449,0.000337]	[-0.0000487, 0.0000497]
.	5	[-0.467, 0.339]	[-0.000651, 0.000540]	[-0.0000666, 0.0000676]

aQGC: VBS (AA+Ĕ)

Machine learning algorithm: nested local outlier factor (NLOF)

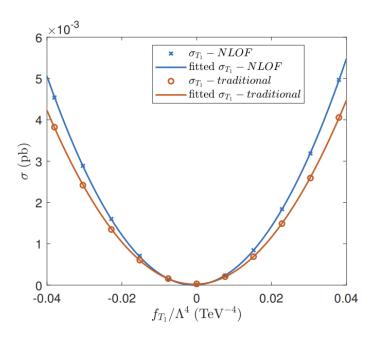
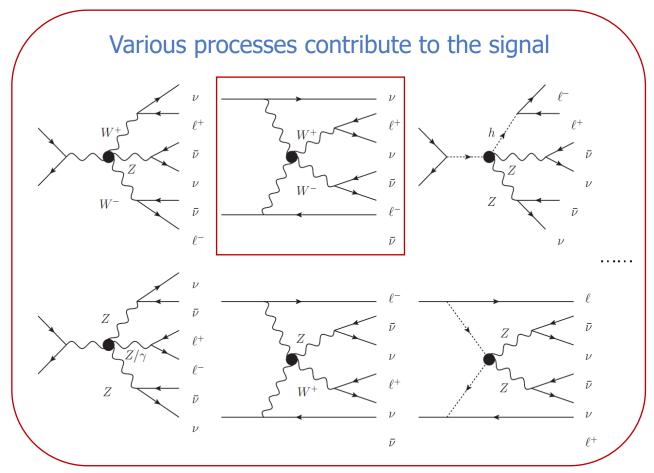


FIG. 5. Comparison of the cross section after cut between the case of a traditional event selection strategy and the NLOF for O_{T_1} at $\sqrt{s} = 10$ TeV.

Chen, **Y-C G** & Yang, [2504.03145]

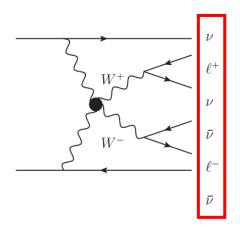
	S_{stat}	3 TeV		S_{stat}	3 TeV
		$1 \mathrm{~ab^{-1}}$			$1 \mathrm{~ab}^{-1}$
		(TeV^{-4})			$({ m TeV^{-4}})$
	2	[-0.267, 0.284]		2	[-0.898, 0.912]
$\tfrac{f_{M_2}}{\Lambda^4}$	3	[-0.333, 0.349]	$\frac{f_{M_3}}{\Lambda^4}$	3	[-1.11, 1.13]
	5	[-0.440, 0.457]		5	[-1.47, 1.48]
	2	[-0.845, 0.940]		2	[-1.64, 2.07]
$\frac{f_{M_4}}{\Lambda^4}$	3	[-1.06, 1.15]	$\frac{f_{M_5}}{\Lambda^4}$	3	[-2.07, 2.51]
	5	[-1.41, 1.50]		5	[-2.79, 3.22]
	2	[-0.124, 0.0415]		2	[-0.134, 0.0333]
$\frac{f_{T_0}}{\Lambda^4}$	3	[-0.139, 0.0565]	$\frac{f_{T_1}}{\Lambda^4}$	3	[-0.147, 0.0464]
	5	[-0.165, 0.0825]		5	[-0.170, 0.0693]
	2	[-0.231, 0.0471]		2	[-0.0533, 0.0265]
$\frac{f_{T_2}}{\Lambda^4}$	3	[-0.251, 0.0665]	$\frac{f_{T_5}}{\Lambda^4}$	3	[-0.0617, 0.0348]
	5	[-0.285, 0.101]		5	[-0.0756, 0.0487]
	2	[-0.0620, 0.0261]		2	[-0.183, 0.0479]
$\frac{f_{T_6}}{\Lambda^4}$	3	[-0.0708, 0.0348]	$\frac{f_{T_7}}{\Lambda^4}$	3	[-0.201, 0.0663]
	5	[-0.0855, 0.0496]		5	[-0.233, 0.0981]

As an unsupervised ML algorithm, NLOF can automatically discover the anomalies


aQGC: VBS (WW+₺)

The exclusive $W^+W^- \rightarrow W^+W^-$ scattering

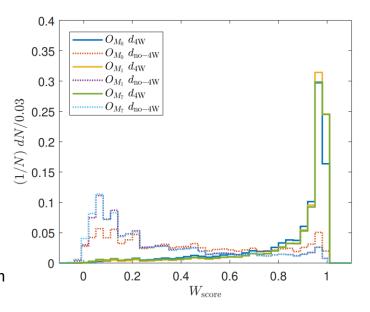
Features of this process with purely leptonic decay:

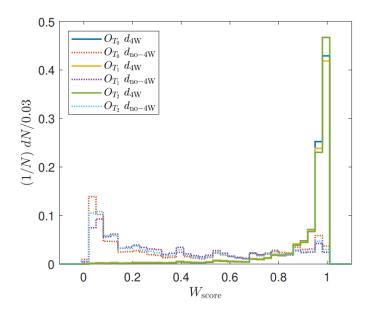

- Absence of QCD background:
 No composite particles in the initial states, so no significant QCD background.
- Initial state of the sub-process known:
 The high-energy muon beams radiate W bosons and turn into neutrinos
 (concentrate on WWWW vertex)

Yang, Han, Qin, Li, Y-C G, JHEP (2022) [2204.10034]

aQGC: VBS (WW+₺)

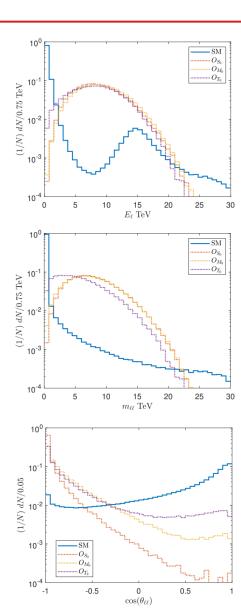
Artificial Neural Networks (ANN)




14 Input variables: 14-dimension vector

- = 4-momenta of charged leptons & missing momentum(12 components)
 - + the flavors of the charged leptons (2 components)

l Output variable: W_{score}


Machine learning can be used for extracting subprocess

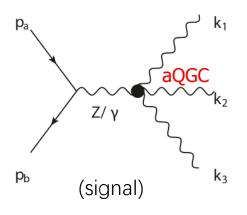
Utilizing an ANN, the W_{score} predicts whether an event is from the $W^+W^- W^+W^-$ process (1 for yes, 0 for no).

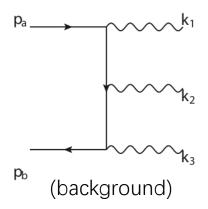
aQGC: VBS (WW+₺)

Cross-sections (ab) after cuts at $\sqrt{s} = 30 \text{ TeV}$.

	SM	O_{S_0}	O_{S_1}	O_{S_2}
f_{S_i}/Λ^4		0.1	0.1	0.1
σ	176805	23559	56280	56326
$N_\ell { m cut}$	140132	18054	43441	43570
$2.2 \; \mathrm{TeV} < E_{\ell} < 22 \; \mathrm{TeV}$	7786.7	17835	42912	43046
$2 \text{ TeV} < m_{\ell\ell} < 20 \text{ TeV}$	4138.8	17594	42331	42460
$\cos(\theta_{\ell\ell}) < -0.3$	2632.3	17378		41758
$\cos(\theta_{\ell\ell}) < -0.8$	1674.8		36049	
	SM	O_{M_0}	O_{M_1}	O_{M_7}
f_{M_i}/Λ^4		0.002	0.004	0.008
σ	176805	964.0	714.2	955.5
$N_\ell { m cut}$	140132	743.8	548.8	738.0
$2.2 \; \mathrm{TeV} < E_{\ell} < 22 \; \mathrm{TeV}$	7786.7	735.9	542.2	728.5
$2.2 \text{ TeV} < m_{\ell\ell} < 20 \text{ TeV}$	3935.0	709.7	516.2	684.7
$W_{\rm score} > 0.85$	964.9	402.0	273.2	
$W_{\rm score} > 0.95$	403.8			220.8
	SM	O_{T_0}	O_{T_1}	O_{T_2}
f_{T_i}/Λ^4		0.0002	0.0003	0.0005
σ	176805	621.7	944.8	842.8
$N_\ell { m cut}$	140132	485.2	726.0	649.4
$2.2 \; \mathrm{TeV} < E_{\ell} < 22 \; \mathrm{TeV}$	7786.7	462.2	688.2	603.0
$2.8~{\rm TeV} < m_{\ell\ell} < 18~{\rm TeV}$	3288.0	366.8	553.3	477.1
$W_{\rm score} > 0.85$	482.0		362.5	346.4
$W_{\mathrm{score}} > 0.9$	299.2	246.2		

Expected constraints on coefficients (absolute value with 10^{-3} TeV⁻⁴) at $\sqrt{s} = 30$ TeV and L = 10 ab⁻¹. Systematic errors are from results with unitarity bounds by factors ½ and 2.

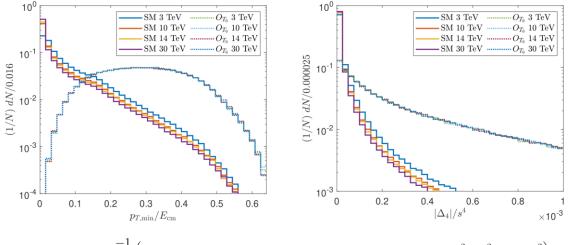

$\mathcal{S}_{ ext{stat}}$	f_{S_0}/Λ^4	f_{S_1}/Λ^4	f_{S_2}/Λ^4
2	$35.3^{+39.5}_{-27.5}$	$61.4^{+21.8}_{-15.6}$	$42.4^{+10.8}_{-0.3}$
3	$72.0^{+20.7}_{-59.5}$	$78.0^{+30.0}_{-5.2}$	$60.0^{+14.6}_{-1.0}$
5	$111.7^{+48.0}_{-87.7}$	$166.3^{+48.6}_{-52.9}$	$95.8_{-4.3}^{+12.5}$
$\mathcal{S}_{ ext{stat}}$	f_{M_0}/Λ^4	f_{M_1}/Λ^4	f_{M_7}/Λ^4
2	$0.45^{+0.59}_{-0.01}$	$1.08^{+0.31}_{-0}$	$1.91^{+0.34}_{-0}$
3	$0.59^{+1.28}_{-0.05}$	$1.35^{+1.07}_{-0.03}$	$2.37^{+1.31}_{-0}$
5	$0.99^{+4.15}_{-0.29}$	$1.90^{+3.88}_{-0.19}$	$3.23^{+8.92}_{-0.15}$
$\mathcal{S}_{ ext{stat}}$	f_{T_0}/Λ^4	f_{T_1}/Λ^4	f_{T_2}/Λ^4
2	$0.043^{+0.006}_{-0}$	$0.059^{+0.010}_{-0.001}$	$0.101^{+0.012}_{-0}$
3	$0.053^{+0.014}_{-0}$	$0.073^{+0.023}_{-0.001}$	$0.124_{-0}^{+0.035}$
5	$0.072^{+0.044}_{-0.004}$	$0.100^{+0.069}_{-0.005}$	$0.166^{+0.109}_{-0.004}$


An ANN-based analysis for $\mu^+\mu^- \to l^+l^-\nu\nu\bar{\nu}\bar{\nu}$ at 30 TeV MuC makes expected constraints on dim-8 aQGCs that are **4** orders of magnitude stronger than those from the 13 TeV LHC.

aQGC: Tri-photon (AAA)

• aQGC in the $\mu^+\mu^- \rightarrow \gamma\gamma\gamma$ process

Yang, Qin, Han, Y-C G & Li, JHEP (2022) [2204.08195]



$$O_{T_0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right], \quad O_{T_1} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right]$$

$$O_{T_2} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right], \quad O_{T_5} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta},$$

$$O_{T_6} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}, \quad O_{T_7} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha},$$

$$O_{T_8} = B_{\mu\nu} B^{\mu\nu} \times B_{\alpha\beta} B^{\alpha\beta}, \quad O_{T_9} = B_{\alpha\mu} B^{\mu\beta} \times B_{\beta\nu} B^{\nu\alpha},$$

$\Delta_4 = \frac{-1}{16} \left(2s_1(st_2(s_2 + t_1) + (st_1 - s_2t_2)(s_2 - t_1)) + (s(t_1 - t_2) + s_2t_2)^2 + s_1^2(s_2 - t_1) \right) + (s(t_1 - t_2) + s_2t_2)^2 + s_1^2(s_2 - t_1) + (s(t_1 - t_2) + s_2^2(s_2 - t_1) + (s(t_1 - t_2) + s_2^2(s_2 - t_1)) + (s(t_1 - t_2) + s_2^2(s_2 - t_1) + s_2^2(s_2 - t_1) + (s(t_1 - t_2) + s_2^2(s_2 - t_2) + (s(t_1 - t_2) + $	$-t_1)^2$
--	-----------

\sqrt{s}		N_{γ} cut	$p_{T,\mathrm{min}}/E_{\mathrm{cm}} > 0.12$	$ \Delta_4 /s^4 > 3 \times 10^{-5}$	efficiency ϵ
$3\mathrm{TeV}$		4.495	1.085	0.686	0.115
$10\mathrm{TeV}$	SM	0.533	0.098	0.062	0.0877
$14\mathrm{TeV}$		0.289	0.050	0.031	0.0809
$30\mathrm{TeV}$		0.0718	0.0109	0.0069	0.0724
	O_{T_0}	0.0125	0.0117	0.0103	0.606
	O_{T_2}	0.0204	0.0193	0.0171	0.624
$3\mathrm{TeV}$	O_{T_5}	5.746	5.394	4.720	0.596
	O_{T_7}	4.706	4.443	3.935	0.613
	O_{T_8}	163.72	153.61	134.16	0.590
	O_{T_9}	189.36	178.86	158.14	0.606

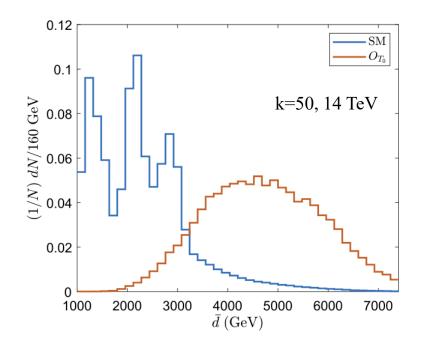
Table 3. The cross-sections σ_{SM} and $\sigma_{O_{T_i}}$ (in unit of fb) and cut efficiencies after selection strategy. The results of aQGCs are obtained using the upper bound of the coefficients in table 1.

aQGC: Triboson (AAA)

aQGC in the $\mu^+\mu^- \rightarrow \gamma\gamma\gamma$ process

- The results show that the triphoton production of MuC is more sensitive to the $T_{8,9}$ operators
- For 3 TeV MuC with $\mathcal{L}=1~\mathrm{ab^{-1}}$, the expected constraints are 2 orders of magnitude stronger than 13 TeV LHC at 95% C.L.
- For 30 TeV MuC with $\mathcal{L} = 90 \text{ ab}^{-1}$, the expected constraints would be about 6 orders of magnitude stronger than 13 TeV LHC.

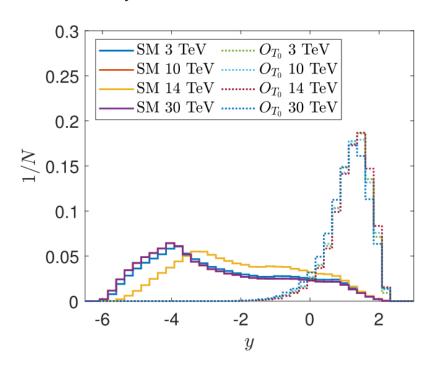
Expected constraints on coefficients of \mathcal{O}_{T_i} operators


		2007 1007 1407 2007 1407 1407 1407 1407 1407 1407 1407 1				1470 37	90 TI V
		$3\mathrm{TeV}$	$10\mathrm{TeV}$	$14\mathrm{TeV}$	$30\mathrm{TeV}$	$14\mathrm{TeV}$	$30\mathrm{TeV}$
		$1 \mathrm{ab^{-1}}$	$10{\rm ab}^{-1}$	$10{\rm ab}^{-1}$	$10{\rm ab}^{-1}$	$20{\rm ab}^{-1}$	$90 ab^{-1}$
	$\mathcal{S}_{ ext{stat}}$	$(10^{-2} \mathrm{TeV^{-4}})$	$(10^{-4}{\rm TeV^{-4}})$	$(10^{-4}\mathrm{TeV^{-4}})$	$(10^{-5}\mathrm{TeV^{-4}})$	(10^{-5}TeV^{-4})	$(10^{-6} \mathrm{TeV^{-4}})$
	2	[-43.49, 14.47]t	[-35.72, 12.19]	[-10.14, 4.09]	[-6.19, 3.30]	[-92.11, 31.68]	[-43.99, 15.08]
$\frac{f_{T_0}(f_{T_1})}{\Lambda^4}$	3	[-48, 57, 19.55]	[-39.98, 16.45]	[-11.50, 5.46]	[-7.21, 4.32]	[-103.1, 42.71]	[-49.24, 20.34]
	5	[-57.08, 28.06]	[-47.10, 23.57]	[-13.77, 7.73]	[-8.92, 6.03]	[-121.6, 61.15]	[-58.04, 29.13]
	2	[-108.0, 22.66]	[-87.71, 19.31]	[-24.37, 6.62]	[-14.06, 5.65]	[-227.4, 49.89]	[-108.0, 23.88]
$rac{f_{T_2}}{\Lambda^4}$	3	[-116.9, 31.59]	[-95.25, 26.85]	[-26.85, 9.09]	[-16.00, 7.58]	[-246.9, 69.37]	[-117.3, 33.19]
	5	[-132.4, 47.06]	[-108.3, 39.87]	[-31.08, 13.32]	[-19.27, 10.86]	[-280.6, 103.0]	[-133.4, 49.27]
	2	[-10.78, 2.61]	[-8.81, 2.22]	[-2.45, 0.758]	[-1.44, 0.638]	[-22.68, 5.76]	[-10.81, 2.75]
$\frac{f_{T_5}(f_{T_6})}{\Lambda^4}$	3	[-11.78, 3.61]	[-9.65, 3.05]	[-2.72, 1.03]	[-1.65, 0.846]	[-24.86, 7.94]	[-11.85, 3.78]
	5	[-13.49, 5.32]	[-11.08, 4.49]	[-3.19, 1.50]	[-2.01, 1.20]	[-28.58, 11.66]	[-13.62, 5.56]
	2	[-27.54, 3.98]	[-22.47, 3.38]	[-6.17, 1.17]	[-3.41, 1.04]	[-58.64, 8.67]	[-27.79, 4.16]
$rac{f_{T_7}}{\Lambda^4}$	3	[-29.22, 5.66]	[-23.89, 4.80]	[-6.64, 1.65]	[-3.79, 1.43]	[-62.29, 12.32]	[-29.53, 5.91]
	5	[-32.22, 8.66]	[-26.42, 7.32]	[-7.48, 2.48]	[-4.46, 2.10]	[-68.80, 18.83]	[-32.65, 9.02]
	2	[-1.74, 0.42]	[-1.42, 0.355]	[-0.399, 0.121]	[-0.233, 0.102]	[-3.70, 0.916]	[-1.76, 0.439]
$rac{f_{T_8}}{\Lambda^4}$	3	[-1.90, 0.58]	[-1.56, 0.490]	[-0.443, 0.165]	[-0.267, 0.136]	[-4.05, 1.26]	[-1.92, 0.605]
	5	[-2.17, 0.86]	[-1.79, 0.721]	[-0.518, 0.239]	[-0.325, 0.193]	[-4.64, 1.86]	[-2.21, 0.890]
	2	[-4.50, 0.63]	[-3.66, 0.538]	[-1.00, 0.188]	[-0.553, 0.167]	[-9.49, 1.39]	[-4.52, 0.664]
$rac{f_{T_9}}{\Lambda^4}$	3	[-4.77, 0.90]	[-3.89, 0.765]	[-1.07, 0.264]	[-0.615, 0.229]	[-10.08, 1.98]	[-4.80, 0.944]
	5	[-5.25, 1.38]	[-4.29, 1.17]	[-1.21, 0.399]	[-0.723, 0.337]	[-11.12, 3.02]	[-5.30, 1.44]

aQGC: Triboson (AAA)

Search for aQGC by Machine Learning algorithms in $\mu^+\mu^- \rightarrow \gamma\gamma\gamma$

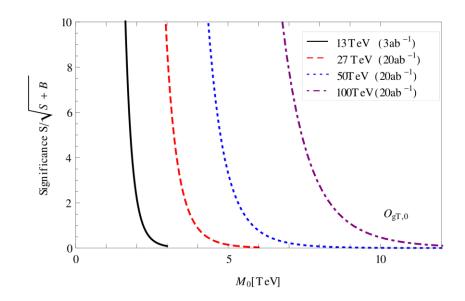
• K-Means Zhang, Yang & Y-C G, EPJC (2024) [2302.01274]


$$d(\overrightarrow{x}, \overrightarrow{k}) = \left\| \overrightarrow{x} - \overrightarrow{k} \right\| = \left[\sum_{i=1}^{n} (x_i - k_i)^2 \right]^{\frac{1}{2}}$$

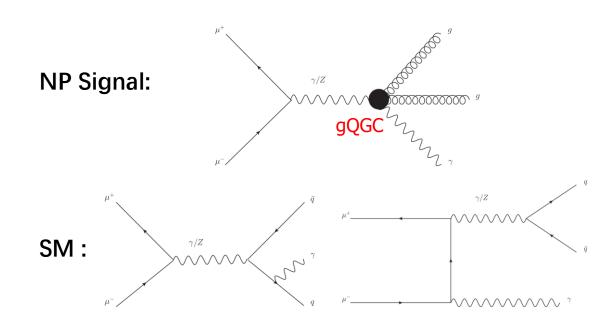
Support Vector Machine (SVM)

Zhang, Y-C G & Yang, EPJC (2024) [2311.15280]

$$\sum_{i} W_i(p_i - \overline{p_i})/d_i + b_{th} > y_{th}$$

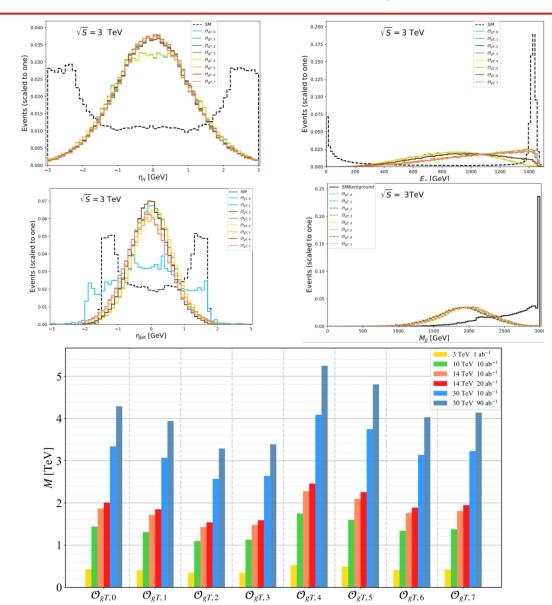

gQGC: Triboson (GGA)

Many discussions on EW QGC, less gluonic ones


gQGC at LHC:

$$gg \rightarrow \gamma \gamma$$
 Ellis & Ge, PRL (2018) [1802.02416]

$$qq \to Z\gamma$$
 Ellis, Ge & K. Ma, JHEP (2022) [2112.06729]


• gQGC at MuC: $\mu^+\mu^- {\to} gg\gamma$ Y-C G, Di & Yang, to be uploaded to arXiv

Most promising channel

- Dim-6 operators do not appear
- Clean signal
- No interference

gQGC: Triboson (GGA)

	\mathcal{S}_{stat}	3 TeV	10 TeV	14 TeV	14 TeV	30 TeV	30 TeV
		1 ab^{-1}	$10~\mathrm{ab}^{-1}$	$10~\mathrm{ab}^{-1}$	$20~\mathrm{ab}^{-1}$	10 ab^{-1}	90 ab^{-1}
	2	< 1.76	< 0.0148	< 0.00515	< 0.00383	< 0.000500	< 0.000185
$ f_0 $	3	< 2.48	< 0.0210	< 0.00745	< 0.00543	< 0.000746	< 0.000263
$({\rm TeV}^{-4})$	5	< 3.94	< 0.0336	< 0.01215	< 0.00870	< 0.001230	< 0.000425
	2	< 2.36	< 0.0212	< 0.00725	< 0.00540	< 0.000707	< 0.000261
$ f_1 $	3	< 3.31	< 0.0300	< 0.01049	< 0.00764	< 0.001050	< 0.000372
$({ m TeV}^{-4})$	5	< 5.27	< 0.0480	< 0.01710	< 0.01219	< 0.001740	< 0.000599
	2	< 5.00	< 0.0431	< 0.01499	< 0.0111	< 0.00145	< 0.000535
$ f_2 $	3	< 7.01	< 0.0609	< 0.02169	< 0.0158	< 0.00215	< 0.000762
$({ m TeV}^{-4})$	5	< 11.1	< 0.0974	< 0.03529	< 0.0253	< 0.00357	< 0.001227
	2	< 4.38	< 0.0390	< 0.0132	< 0.00984	< 0.00129	< 0.000479
$ f_3 $	3	< 6.15	< 0.0551	< 0.0191	< 0.01339	< 0.00192	< 0.000682
$({ m TeV}^{-4})$	5	< 9.78	< 0.0881	< 0.0311	< 0.02229	< 0.00319	< 0.001098
	2	< 0.79	< 0.00664	< 0.00232	< 0.00173	< 0.000224	< 0.000082
$ f_4 $	3	< 1.11	< 0.00938	< 0.00336	< 0.00244	< 0.000333	< 0.000118
$({ m TeV}^{-4})$	5	< 1.76	< 0.01499	< 0.00548	< 0.00392	< 0.000550	< 0.000190
	2	< 1.03	< 0.0095	< 0.00325	< 0.00242	< 0.000316	< 0.000117
$ f_5 $	3	< 1.48	< 0.0134	< 0.00470	< 0.00342	< 0.000470	< 0.000166
$({ m TeV}^{-4})$	5	< 2.36	< 0.0215	< 0.00767	< 0.00549	< 0.000770	< 0.000268
	2	< 2.24	< 0.0193	< 0.00664	< 0.00494	< 0.000648	< 0.000239
$ f_6 $	3	< 3.14	< 0.0272	< 0.00961	< 0.00700	< 0.000963	< 0.000340
$({ m TeV}^{-4})$	5	< 5.00	< 0.0435	< 0.01567	< 0.01122	< 0.001590	< 0.000549
	2	< 1.96	< 0.0175	< 0.00591	< 0.00440	< 0.000580	< 0.000214
$ f_7 $	3	< 2.75	< 0.0247	< 0.00855	< 0.00623	< 0.000862	< 0.000305
$({ m TeV}^{-4})$	5	< 4.37	< 0.0394	< 0.01394	< 0.00999	< 0.001430	< 0.000491

Compared to 13 TeV LHC, 10 TeV MuC enhance the constraints by 25%, 30 TeV MuC would more than double the current limits on M. 21

Summary

- The MuC's nature as a lepton collider, coupled with its high energy and luminosity, facilitates both direct and indirect searches for new physics.
- Multi-boson physics at dimension-8 provide windows of opportunity for probing indirectly new physics BSM at the MuC.
- ML serves as a powerful tool in the search for new physics, continues to unlock breakthroughs of HEP.

Thank you!