Heavy QCD Axion at Muon Collider

Outline

• How a heavy axion can solve strong-CP problem

• How such heavy axion can be measured at muon collider

Motivation of heavy QCD axion

- Solving strong-CP problem
 - $\frac{g_3^2}{32\pi^2}\theta G\tilde{G}$ where $\theta \in [0,2\pi)$
 - Experimental measured value $\theta < 10^{-10}$

$$\bullet \frac{g_3^2}{32\pi^2} \frac{\phi(x)}{f_a} G \tilde{G} \qquad \cdots$$

•
$$V(\phi) = \Lambda_{QCD}^4 \left(1 - \cos(\theta + \frac{\phi(x)}{f_a}) \right) \rightarrow \delta \phi = a(x) \rightarrow m_a \sim \frac{\Lambda_{QCD}^2}{f_a}$$

Motivation of heavy QCD axion

• Mirror model:

- Introduce a full copy of SM sector
- But the mirror sector has a different vev of Higgs $v_{mirror} \gg v_{SM}$
- All masses in the mirror sector are heavier
- The running coupling of mirror-sector QCD will be modified $\rightarrow \Lambda_{QCD}^{mirror} \gg \Lambda_{QCD}$

• $m_a \sim \frac{\left(\Lambda_{QCD}^{mirror}\right)^2 + \Lambda_{QCD}^2}{f_a}$

Motivation of heavy QCD axion

• Extra-dim axion model (4+1d)

• 5D action:
$$S \supset -\int_0^L \mathrm{d}y \int \mathrm{d}^4x \left\{ \frac{1}{2g_5^2} \mathrm{tr} \left[G_{MN} G^{MN} \right] + \frac{1}{4g_5^2} F_{MN} F^{MN} - \frac{b_{\mathrm{CS}}}{32\pi^2} \epsilon^{MNRST} B_M \mathrm{tr} [G_{NR} G_{ST}] \right\}$$

- 4D effective Lagrangian : $\mathcal{L} \supset -\frac{1}{2} \text{tr} \left[G_{\mu\nu} G^{\mu\nu} \right] + \frac{1}{2} (\partial_{\mu} a)^2 + \frac{b_{\text{CS}} L g_s^3}{32\pi^2} a \operatorname{tr} G_{\mu\nu} \widetilde{G}^{\mu\nu} \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
- $a(x) = \frac{B_5(x)}{a_5/\sqrt{L}}$, seems like: $m_a \sim \frac{\Lambda_{QCD}^2}{f_a}$ still small
- But, there are small instanton effect from UV scale make the m_a larger again. 2001.05610

Effective coupling of Axion

$$\mathcal{L} \supset c_3 \frac{\alpha_s}{8\pi f_a} aG\tilde{G} + c_2 \frac{\alpha_2}{8\pi f_a} aW\tilde{W} + c_1 \frac{\alpha_1}{8\pi f_a} aB\tilde{B} \quad \text{with } c_3 \sim c_2 \sim c_1 \sim 1$$

$$\frac{\alpha_s}{8\pi} = 0.0046951, \frac{\alpha_1}{8\pi} = 0.0004058, \frac{\alpha_2}{8\pi} = 0.00135$$

Axion mainly couple to gluon.

$$c_1 = c_2 = c_3 = 1$$
:
 $Br(a \to gg) \gg Br(a \to WW, ZZ, \gamma\gamma)$

Why muon collider?

- High energy (3,10 TeV):
 - High mass (low synchrotron radiation)
 - Fundamental particle: full energy collision
- Clean environment:
 - Known initial state
 - Clean background

Expect to have great sensitivity.

Axion production @ MuC

• Leading channel: VBF production

• Subleading channel: associated production and VBS production

Axion production @ 10 TeV MuC

 $|\eta(g)| < 2.5, p_T(g) > 10 \text{ GeV}, \Delta R(gg) > 0.4$

Background

Axion search @ MuC

2508.XXXX

Conclusion

• Heavy QCD axion models can be motivated by strong-CP problem.

• TeV axion can be well explored at MuC with a huge parameter space.

Backup

QCD running coupling

$$\frac{1}{g^2} = \frac{1}{g_0^2} - \frac{1}{16\pi^2} \left(\frac{11N}{3} - \frac{2}{3}n_f - \frac{1}{6}n_s \right) \log \left(\frac{M_0^2}{\mu^2} \right)$$