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Why establish a new RF test stand?

Efficient cooling remains one of the biggest technical hurdles for a muon collider

* Need enabling technology that can take us from the edge of “reasonable
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* Our new research thrust will investigate applying these techniques for M. Nasr, et al. "Experimental demonstration of particle acceleration
. . . . . with normal conducting accelerating structure at cryogenic
operation within strong magnetic fields temperature.” PRAB 24.9 (2021): 093201,

« Siting this test area at SLAC’s NLCTA Test Facility
deliberately ensures this capability is readily
accessible to the broader community
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RF cavity operation in external magnetic fields

Magnetic fields produce enhanced effects of field emission and multipacting

for muon ionization cooling: A feasibility demonstration
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SLAC experience contributing to 805 MHz modular cavity

805 MHz Cavity Thermal Simulation Modeling emission for 805 MHz

Li, Zenghai, et al. "RF CaV|ty Multipacting, B=3T

optimization and analysis . . . . . .
of the 805-MHz cavity for Impact f)f fleld emission an.d multipacting unde.r high

the MuCool program using magnetic field analyzed using ACE3P codes suite

ACE3P." AIP Conference * RF field generated using Omega3P/S3P field solver
Proceedings. Vol. 1507. No. «  External magnetic field applied for particle tracking study
L. American Institute of *  Multipacting bands and location identified using particle

Physics, 2012.
o tracking module Track3P of ACE3P
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* RF field thermal load generated using
Omega3P/S3P of ACE3P code suite

* thermal and mechanical stress
analyzed using ACE3P multi-physics
module TEM3P
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RF Accelerator Research @ SLAC

Design, fabrication and
testing of accelerator
structures, high-power RF
sources and integrated
systems

Multi-physics modeling &
simulation of performance

Integrated engineering
capabilities

Expertise in S-band, X-band,
C-band and THz




Normal Conducting RF Accelerator Design at SLAC

Improving cavity efficiency and cost-effective fabrication

Re-entrant nose cone design reduces surface magnetic field to enable a higher gradient and very high shunt
impedance, hence very efficient linac structure

Maximize cavity shunt impedance with narrow iris apertures and distributed coupling of power
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We can employ this optimization approach but with new design constraints
determined by ionization cooling requirements

Magnetic field distribution around the cell surface
- Nasr, M. H., and S. G.
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Cold Copper RF Accelerating Structures

Ernest Courant Outstanding Paper

140 MeV/m measured with beam tests at NLCTA Recognition

Highlights Recent Accepted Special Editions Authors Referees Sponsors Search Prd

Breakdown rate (BDR) reduction by 50x from room temperature operation —

Experimental demonstration of particle acceleration with normal
conducting accelerating structure at cryogenic temperature

Breakdown limits primarily driven by high H-field regions within cell coupler

Phys. Rev. Accel. Beams 24, 093201 - Published 13 September 2021
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.092001
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.093201

Applying High Temp Superconductors to RF design

As a first approach, a pulse compressor cavity utilizing the TM010 mode is being built
Cavity is built from 8 facets coated with HTS tapes, with surface current to run longitudinally

Q. remains roughly constant around 39000, with Qg rising to over 150k at 80 K (3.5x Copper)

T=80.0K, f=11.0756GHz
Q0=152786.6, Qe=39200.2, B=3.898

- 49.750

s Data
11.120 in -5} e Fit

) 11.6750 11.6755 11.6760 11.6765
HTS Cavity Cryostat for testing cavi Frequency (GHz)
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SLAS Testing with MW-scale power at NLCTA this fall A. Dhar ®




GARD Research at New Test Area

Determine gradient dependence on cavity geometry, material, pulse length, and operating
temperature in high magnetic fields

» Test cavity geometries and materials relevant E‘

Drawing of 5 T solenoid
P from Cryomagnetics to be
delivered to SLAC by

to muon cooling channel January 2026

* Benchmark high gradient results for frequency
scaling with measurements at S-band and L-
band available at NLCTA

* Measurements of the field emission and
associated damage will be used to benchmark
our simulated field emission in SLAC’s ACE3P
code suite.

Additional SLAC LDRD proposal submitted to design normal conducting rf cavities specifically optimized for
ionization cooling, scaled to S-band, and to test them with high power RF in the new 5 T solenoid.
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High Field Test Area with 5 T Solenoid

Superconducting solenoid
from Cryomagnetics

5 T with +/-1% over >10 cm DSV
Homogenous Region

9.5”" diameter horizontal bore at
room temperature

50-1050-CUST Field Profile
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High-Power Testing at S-band for Initial Prototyping

Example S-band prototype cavity for

Fabrication informed by existing SLAC
structures at S-band and L-band
* Prototype cavities can be fabricated and tested

cost effectively at S-band before scaling to the
lower frequencies needed for ionization cooling

* Moeasurements at S-band will be used to
benchmark frequency scaling

Split-block cavity halves
* L-band already installed at NLCTA, need to be prior to brazing
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NLCTA in BeamNetUS
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BeamNetUS is a network of test facilities with a common mission: b e O m N e-l- U S T o

* Advance accelerator research and applications of accelerator technology

accelerating beam-based research

* Provide access to unique accelerator facilities and specialized equipment £

» Foster collaboration to exchange ideas, skills and resources.

BeamNetUS offers a streamlined proposal process for gaining access to member facilities
* Awards cover beam time, expert support, travel and materials

« Expected timeline is 6 - 12 months from proposal submission to experimental run (1-3 weeks) beamnetus.org

NLCTA test facility provides opportunities for early career scientist and engineers, and student mentoring

with hands-on experience in an active accelerator research environment



NLCTA Test Facility

Next Linear Collider Test Accelerator (NLCTA)

® Radiation shielded bunker with accelerator hardware
and multiple high power RF klystrons at X-band
(11.424 GHz) and S-band (2.856 GHz)

* Dedicated laser room with Ti:Sapph laser system

* Cryostats reaching 4 K with high power RF at X-band

* In-house clean room, machine shop, and experiment
staging areas

B062 .
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Accelerator Radlologlcal Enclosure
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https://my.matterport.com/models/AKSRXbG8JM3?section=media
https://my.matterport.com/models/AKSRXbG8JM3?section=media
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NLCTA Test Facility Capabilities L’%‘g'@s%

Test bed for accelerator technology R&D

* Multiple distinct high-power test areas in a radiation shielded bunker, including

5 T solenoid at SLAC

the stand-alone high-power XTA beamline delivering beam up to 75 MeV by January 2026
* High power RF available at X-band and S-band now, soon L-band too
* Accelerator housing is located inside of the End Station B building with access to 336mm
the laser room (Ti:Sapph laser for XTA), clean room, and machine shop, as well as {32,91'“}

experiment staging areas

Examples of potential areas for proposals and collaboration:
« Room temperature and cryogenic tests of high gradient RF

structures and materials studies {950,
» Detector testing and development on the XTA beamline

NLCTA’s first BeamNetUS Users were a team
of undergrads from Harvey Mudd College
completing a capstone engineering project.

s wikll DOE’s Science Undergraduate Laboratory Internship (SULI) program
MEolRees  https://science.osti.gov/wdts/suli

o
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SLAS NLCTA Point of Contact: Emma Snively, esnively@slac.stanford.edu


https://science.osti.gov/wdts/suli

Outlook for High Field Test Area Capabilities and R&D Effort

Year 1 » Year 5
. Cold Copper .
. ¢ . Normal Conducting . High Temperature
RF Materlals S tUd I€s: Cavities anc/onDifierent Superconductors

Materials, Geometries

Multi-Physics
Analysis

Frequency Cooling Cavity Multi-Cell
Scaling Designs Cavities

Design Studies:

Benchmarking

Opportunities to collaborate in defining path, structure design, testing cavities and analysis
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